Bioadsorción del ion cobre (II) en solución acuosa mediante el uso de vaina de arveja (Pisum sativum L.)
Publicado 2025-09-30
Palabras clave
- Bioadsorción,
- cobre (II), ,
- isoterma de langmuir,
- modelo cinético de pseudo segundo orden,
- vaina de arveja
Derechos de autor 2025 Yessenia Velasquez Zúñiga, Javier Mamani Paredes, Wilson Calsin Berrios, Carmen Villanueva Quispe

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
La evaluación de la bioadsorción del ion cobre (II) en solución acuosa mediante el uso de la vaina de arveja (Pisum sativum L.), un residuo agroindustrial abundante y económico. El objetivo fue determinar la capacidad de bioadsorción del ion Cu (II) en solución acuosa mediante el uso de la vaina de arveja (Pisum sativum L.). La metodología es cuantitativa, experimental y nivel aplicativo. Se caracterizó la biomasa en términos de humedad, cenizas, extracto etéreo, fibra cruda, densidad aparente y pH; la vaina de arveja fue sometida a un tratamiento físico y químico que incluye una activación acida con HCl y alcalina con NaOH; en las pruebas de bioadsorción se aplicó un diseño experimental de segundo orden, variando la cantidad de adsorbente, pH y temperatura; se evaluó las isotermas y modelos cinéticos de adsorción. La caracterización de la vaina de arveja presentó un alto contenido de fibra de 51,94 % y un pH ácido de 4,7 en la vaina de arveja; se consiguió mejores resultados con la activación alcalina de NaOH 0.1 M; los parámetros adecuados obtenidos en las pruebas de bioadsorción son 0,1 g de adsorbente, pH de 5,5 y temperatura 25 °C; el proceso se ajustó a la isoterma de Langmuir con una capacidad máxima de adsorción de 45,45 mg/g, indicando una adsorción en monocapa sobre una superficie homogénea. La cinética de adsorción fue descrita por el modelo de pseudo segundo orden. Concluyendo que la vaina de arveja activada con NaOH, tiene alta capacidad de bioadsorción del cobre (II) en aguas contaminadas.
Referencias
- Adegoke, K. A., Akinnawo, S. O., Adebusuyi, T. A., Ajala, O. A., Adegoke, R. O., Maxakato, N. W., & Bello, O. S. (2023). Modified biomass adsorbents for removal of organic pollutants: a review of batch and optimization studies. International Journal of Environmental Science and Technology, 20(10), 11615–11644. https://doi.org/10.1007/s13762-023-04872-2
- Aguiar, A. B. S., Costa, J. M., Santos, G. E., Sancinetti, G. P., & Rodriguez, R. P. (2022). Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis. Sustainable Chemistry, 3(4), 535–550. https://doi.org/10.3390/suschem3040033
- Aita, S. A., Mahmoud, R., Hafez, S. H. M., & Zaher, A. (2025). Investigating adsorption of aqueous heavy metals through isotherms and kinetics with Zn-Co-Fe/LDH for remarkable removal efficiency. Applied Water Science, 15(4), 1–17. https://doi.org/10.1007/s13201-025-02390-9
- Akaangee Pam, A., Oluseun Elemile, O., Ephraim Musa, D., Chijoke Okere, M., Olusegun, A., & Ahmed Ameh, Y. (2023). Removal of Cu (II) via chitosan-conjugated iodate porous adsorbent: Kinetics, thermodynamics, and exploration of real wastewater sample. Results in Chemistry, 5, 100851. https://doi.org/10.1016/J.RECHEM.2023.100851
- ANA. (2025). INFORME TECNICO N° 0043-2025-ANA-AAA.TIT/RWAA. Resultados de monitoreo de la calidad del agua superficial en la Unidad Hidrográfica Pucará (24 al 27 de marzo de 2025).
- Bontzolis, C. D., Dimitrellou, D., Plioni, I., Kandylis, P., Soupioni, M., Koutinas, A. A., & Kanellaki, M. (2024). Effect of solvents on aniseed aerial plant extraction using soxhlet and ultrasound methods, regarding antimicrobial activity and total phenolic content. Food Chemistry Advances, 4, 100609. https://doi.org/10.1016/J.FOCHA.2024.100609
- Burk, G. A., Herath, A., Crisler, G. B., Bridges, D., Patel, S., Pittman, C. U., & Mlsna, T. (2020). Cadmium and Copper Removal From Aqueous Solutions Using Chitosan-Coated Gasifier Biochar. Frontiers in Environmental Science, 8(November), 1–11. https://doi.org/10.3389/fenvs.2020.541203
- Ciobanu, A. A., Bulgariu, D., Ionescu, I. A., Puiu, D. M., Vasile, G. G., & Bulgariu, L. (2023). SS symmetry Evaluation of Thermodynamic Parameters for Cu ( II ) Ions Biosorption on Algae Biomass and Derived Biochars. Ii, 1–15.
- Da Costa, Y., Salvestrini, S., Gomez, C., Coelho, J., Alves, A., Serra, J., Melo, H., Sena, D., De Paula, F., & Pereira, R. (2024). Sorption thermodynamic and kinetic study of Cu(II) onto modified plant stem bark. Environmental Science and Pollution Research, 31(52), 61740–61762. https://doi.org/10.1007/s11356-024-35194-6
- Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M. M., Elsayed, N. M. K., & Hammad, W. A. (2022a). Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10–20. https://doi.org/10.1016/J.SAJCE.2022.01.002
- Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M. M., Elsayed, N. M. K., & Hammad, W. A. (2022b). Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10–20. https://doi.org/10.1016/J.SAJCE.2022.01.002
- Dev, S., Kruse, R. L., Hamilton, J. P., & Lutsenko, S. (2022). Wilson Disease: Update on Pathophysiology and Treatment. Frontiers in Cell and Developmental Biology, 10(May), 1–8. https://doi.org/10.3389/fcell.2022.871877
- Doble, J., Grabau, E., Henry, K., Rosenberg, R., Tomasko, C., Karshbaum, M., Gute, B., & Wainman, J. W. (2024). Visualización del principio de Le Châtelier mediante titulaciones complexométricas de plomo EDTA. Revista de Educación Química, 102(1), 1–466.
- Eleryan, A., Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Eldeeb, T. M., El Nemr, M. A., Hassaan, M. A., Ragab, S., Osibote, O. A., Kusuma, H. S., Darmokoesoemo, H., & Nemr, A. El. (2024). Copper(II) ion removal by chemically and physically modified sawdust biochar. Biomass Conversion and Biorefinery, 14(8), 9283–9320.
- Elewa, A. M., Amer, A. A., Attallah, M. F., Gad, H. A., Al-Ahmed, Z. A. M., & Ahmed, I. A. (2023). Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. Materials, 16(3). https://doi.org/10.3390/ma16031251
- El-Nemr, M. A., El Nemr, A., Hassaan, M. A., Ragab, S., Tedone, L., De Mastro, G., & Pantaleo, A. (2022). Microporous Activated Carbon from Pisum sativum Pods Using Various Activation Methods and Tested for Adsorption of Acid Orange 7 Dye from Water. Molecules, 27(15). https://doi.org/10.3390/molecules27154840
- Galvis, D. E., Lozano, A. S., & Guerrero, C. A. (2024). Valorización de vainas de guisante: Explorando la influencia de la relación biomasa/agua, el tamaño de partícula, la agitación y los catalizadores en las plataformas químicas y la producción de biocarbón. Sustainability, 16(17), 1–25.
- Ghibate, R., Chrachmy, M., Kerrou, M., Ben Baaziz, M., Alaqarbeh, M., Amechrouq, A., Taouil, R., & Senhaji, O. (2025). Eco-friendly adsorption of Rhodamine B dye using Punica granatum peel from an aqueous medium. Green Analytical Chemistry, 12, 100201. https://doi.org/10.1016/J.GREEAC.2024.100201
- Gutiérrez, P., Aldas, M., Gavilanes, D., Cadena, F., & Valle, V. (2025). Corn cob valorization: Synthesis of a polymer based on crystalline cellulose with poly(ethylene glycol) diacrylate and N-vinylcaprolactam. Cleaner Engineering and Technology, 27, 101019. https://doi.org/10.1016/J.CLET.2025.101019
- Herrera, A., Tejada-Tovar, C., & González-Delgado, Á. D. (2020). Enhancement of cadmium adsorption capacities of agricultural residues and industrial fruit byproducts by the incorporation of Al2O3nanoparticles. ACS Omega, 5(37), 23645–23653. https://doi.org/10.1021/acsomega.0c02298
- Isaac, R., & Siddiqui, S. (2022). Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: Isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresource Technology Reports, 18, 101004. https://doi.org/10.1016/J.BITEB.2022.101004
- Ivanchenko, A., Soroka, O., Yelatontsev, D., & Panasenko, V. (2025). Heavy metal ions removal from an aqueous solution using an adsorbent derived from walnut shell: Equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 321, 101048. https://doi.org/10.1016/J.DWT.2025.101048
- Jiang, W., Hu, Y., & Zhu, Z. (2022). Biosorption Characteristic and Cytoprotective Effect of Pb2+, Cu2+ and Cd2+ by a Novel Polysaccharide from Zingiber strioatum. Molecules, 27(22). https://doi.org/10.3390/molecules27228036
- Kadimpati, K. K., Sanneboina, S., Thadikamala, S., & Mondithoka, K. P. (2024). Biosorption of Cu+ 2 by Green Algae, Ulva fasciata: Optimization by Response Surface Methodology. National Academy Science Letters, 47(6), 633–637. https://doi.org/10.1007/s40009-024-01419-y
- Kuśmierek, K., Świątkowski, A., Zienkiewicz-Strzałka, M., & Deryło-Marczewska, A. (2025). Studies of the kinetics and isotherms of copper ions adsorption on APTES-modified silica materials. Desalination and Water Treatment, 321, 100965. https://doi.org/10.1016/J.DWT.2024.100965
- Li, Y., Yang, J., Zhang, Z., & Yuan, J. (2024). Optimization of phosphorus adsorption on honeycomb briquette ash by application of response surface methodology. Desalination and Water Treatment, 317, 100224. https://doi.org/10.1016/J.DWT.2024.100224
- Maldonado, I., Miranda-Mamani, J., & Paredes-Espinal, C. (2023). Heavy metals and ecological alterations resulting from wastewater discharge in Inner Puno Bay, Lake Titicaca. Environmental Nanotechnology, Monitoring & Management, 20, 100903. https://doi.org/10.1016/J.ENMM.2023.100903
- Medhi, H., Chowdhury, P. R., Baruah, P. D., & Bhattacharyya, K. G. (2020). Kinetics of Aqueous Cu(II) Biosorption onto Thevetia peruviana Leaf Powder. ACS Omega, 5(23), 13489–13502. https://doi.org/10.1021/acsomega.9b04032
- Meftah, S., Meftah, K., Drissi, M., Radah, I., Malous, K., Amahrous, A., Chahid, A., Tamri, T., Rayyad, A., Darkaoui, B., Hanine, S., El Hassan, O., & Bouyazza, L. (2025). Heavy metal polluted water: Effects and sustainable treatment solutions using bio adsorbents aligned with the SDGs. Discover Sustainability, 6(137), 20.
- MIDAGRI. (2021). Agro en cifras: Boletín estadístico anual 2021.
- Mohammad, A., Asgedom, A., K., M., A., T., T., G., & Van der Bruggen, B. (2024). Evaluación de la calidad del agua subterránea para beber utilizando un índice de calidad en Abyi Adi, Tigrai, norte de Etiopía. Heliyon, 10(16).
- Mohammed, A. H., Shartooh, S. M., & Trigui, M. (2025). Biosorption and Isotherm Modeling of Heavy Metals Using Phragmites australis. Sustainability (Switzerland), 17(12), 1–17. https://doi.org/10.3390/su17125366
- Montgomery, D. (2020). Design and analysis of experiments (10ma ed.). John Wiley & Sons.
- Mozaffari Majd, M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A., & Sillanpää, M. (2022). Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Science of The Total Environment, 812, 151334. https://doi.org/10.1016/J.SCITOTENV.2021.151334
- Ndekei, A., Gitita, M.-, Njomo, N., & Mbui, D. (2021). Synthesis and Characterization of Rice Husk Biochar and its Application in the Adsorption Studies of Lead and Copper. International Research Journal of Pure and Applied Chemistry, June, 36–50. https://doi.org/10.9734/irjpac/2021/v22i430402
- Packiyam, T., Raja, K., Chengalvarayan, D. V., Anbalagan, S., Ragini, Y. P., & Sundaram, V. A. (2025). Green energy-compatible cadmium (II) biosorption from wastewater using Codium decorticatum: Environmental impact, adsorption dynamics, and neural network modeling. Next Materials, 8, 100619. https://doi.org/10.1016/J.NXMATE.2025.100619
- Raji, Z., Karim, A., Karam, A., & Khalloufi, S. (2023). Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775–805. https://doi.org/10.3390/waste1030046
- Shamohammadi, S., Khajeh, M., Fattahi, R., & Kadkhodahosseini, M. (2022). Introducing the new model of chemical adsorption for heavy metals by Jacobi activated carbon adsorbents, Iranian activated carbon and blowy sand. Case Studies in Chemical and Environmental Engineering, 6, 100220. https://doi.org/10.1016/J.CSCEE.2022.100220
- Tenza, N. P., Schmidt, S., & Mahlambi, P. N. (2025). Unlocking the potential of Chlorella sp. biomass: an effective adsorbent for heavy metals removal from wastewater. Frontiers in Environmental Chemistry, 6(April), 1–15. https://doi.org/10.3389/fenvc.2025.1531726
- Wu, Y., You, Y., Wu, L., Tong, L., Zhang, F., Yang, J., & Zheng, J. (2025). Physicochemical and structural characterization coupled with untargeted metabolomics analysis of metabolic variations in different bamboo shoot powders. LWT, 224, 117820. https://doi.org/10.1016/J.LWT.2025.117820
- Zhang, Y., He, Q., Yang, Y., & Bai, Q. (2024). Preparation of a biochar-lignosulfonate composite material and its adsorption performance for Cu2+. RSC Advances, 14(31), 22335–22343. https://doi.org/10.1039/d4ra00588k
