Vol. 14 No. 3 (2025): Revista de Investigaciones
Artí­culos Originales

Bioadsorción del ion cobre (II) en solución acuosa mediante el uso de vaina de arveja (Pisum sativum L.)

Yessenia Velasquez Zúñiga
Universidad Nacional del Altiplano Puno-Perú
Bio
Javier Mamani Paredes
Universidad Nacional del Altiplano Puno-Perú
Bio
Wilson Calsin Berrios
Universidad Nacional de Juliaca Puno-Perú
Bio
Carmen Villanueva Quispe
Instituto del Mar del Perú – IMARPE Puno-Perú
Bio
volumen 14 numero 3 2025

Published 2025-09-30

Keywords

  • Bioadsorción,
  • cobre (II), ,
  • isoterma de langmuir,
  • modelo cinético de pseudo segundo orden,
  • vaina de arveja

How to Cite

Velasquez Zúñiga, Y., Mamani Paredes, J., Calsin Berrios, W., & Villanueva Quispe, C. (2025). Bioadsorción del ion cobre (II) en solución acuosa mediante el uso de vaina de arveja (Pisum sativum L.). Revista De Investigaciones, 14(3), 144-156. https://doi.org/10.26788/ri.v14i3.7041

Abstract

La evaluación de la bioadsorción del ion cobre (II) en solución acuosa mediante el uso de la vaina de arveja (Pisum sativum L.), un residuo agroindustrial abundante y económico. El objetivo fue determinar la capacidad de bioadsorción del ion Cu (II) en solución acuosa mediante el uso de la vaina de arveja (Pisum sativum L.).  La metodología es cuantitativa, experimental y nivel aplicativo. Se caracterizó la biomasa en términos de humedad, cenizas, extracto etéreo, fibra cruda, densidad aparente y pH; la vaina de arveja fue sometida a un tratamiento físico y químico que incluye una activación acida con HCl y alcalina con NaOH; en las pruebas de bioadsorción se aplicó un diseño experimental de segundo orden, variando  la cantidad de adsorbente, pH y temperatura; se evaluó las isotermas y modelos cinéticos de adsorción. La caracterización de la vaina de arveja presentó un alto contenido de fibra de 51,94 % y un pH ácido de 4,7 en la vaina de arveja; se consiguió mejores resultados con la activación alcalina de NaOH 0.1 M; los parámetros adecuados obtenidos en las pruebas de bioadsorción son 0,1 g de adsorbente, pH de 5,5 y temperatura 25 °C; el proceso se ajustó a la isoterma de Langmuir con una capacidad máxima de adsorción de 45,45 mg/g, indicando una adsorción en monocapa sobre una superficie homogénea. La cinética de adsorción fue descrita por el modelo de pseudo segundo orden. Concluyendo que la vaina de arveja activada con NaOH, tiene alta capacidad de bioadsorción del cobre (II) en aguas contaminadas.

References

  1. Adegoke, K. A., Akinnawo, S. O., Adebusuyi, T. A., Ajala, O. A., Adegoke, R. O., Maxakato, N. W., & Bello, O. S. (2023). Modified biomass adsorbents for removal of organic pollutants: a review of batch and optimization studies. International Journal of Environmental Science and Technology, 20(10), 11615–11644. https://doi.org/10.1007/s13762-023-04872-2
  2. Aguiar, A. B. S., Costa, J. M., Santos, G. E., Sancinetti, G. P., & Rodriguez, R. P. (2022). Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis. Sustainable Chemistry, 3(4), 535–550. https://doi.org/10.3390/suschem3040033
  3. Aita, S. A., Mahmoud, R., Hafez, S. H. M., & Zaher, A. (2025). Investigating adsorption of aqueous heavy metals through isotherms and kinetics with Zn-Co-Fe/LDH for remarkable removal efficiency. Applied Water Science, 15(4), 1–17. https://doi.org/10.1007/s13201-025-02390-9
  4. Akaangee Pam, A., Oluseun Elemile, O., Ephraim Musa, D., Chijoke Okere, M., Olusegun, A., & Ahmed Ameh, Y. (2023). Removal of Cu (II) via chitosan-conjugated iodate porous adsorbent: Kinetics, thermodynamics, and exploration of real wastewater sample. Results in Chemistry, 5, 100851. https://doi.org/10.1016/J.RECHEM.2023.100851
  5. ANA. (2025). INFORME TECNICO N° 0043-2025-ANA-AAA.TIT/RWAA. Resultados de monitoreo de la calidad del agua superficial en la Unidad Hidrográfica Pucará (24 al 27 de marzo de 2025).
  6. Bontzolis, C. D., Dimitrellou, D., Plioni, I., Kandylis, P., Soupioni, M., Koutinas, A. A., & Kanellaki, M. (2024). Effect of solvents on aniseed aerial plant extraction using soxhlet and ultrasound methods, regarding antimicrobial activity and total phenolic content. Food Chemistry Advances, 4, 100609. https://doi.org/10.1016/J.FOCHA.2024.100609
  7. Burk, G. A., Herath, A., Crisler, G. B., Bridges, D., Patel, S., Pittman, C. U., & Mlsna, T. (2020). Cadmium and Copper Removal From Aqueous Solutions Using Chitosan-Coated Gasifier Biochar. Frontiers in Environmental Science, 8(November), 1–11. https://doi.org/10.3389/fenvs.2020.541203
  8. Ciobanu, A. A., Bulgariu, D., Ionescu, I. A., Puiu, D. M., Vasile, G. G., & Bulgariu, L. (2023). SS symmetry Evaluation of Thermodynamic Parameters for Cu ( II ) Ions Biosorption on Algae Biomass and Derived Biochars. Ii, 1–15.
  9. Da Costa, Y., Salvestrini, S., Gomez, C., Coelho, J., Alves, A., Serra, J., Melo, H., Sena, D., De Paula, F., & Pereira, R. (2024). Sorption thermodynamic and kinetic study of Cu(II) onto modified plant stem bark. Environmental Science and Pollution Research, 31(52), 61740–61762. https://doi.org/10.1007/s11356-024-35194-6
  10. Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M. M., Elsayed, N. M. K., & Hammad, W. A. (2022a). Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10–20. https://doi.org/10.1016/J.SAJCE.2022.01.002
  11. Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M. M., Elsayed, N. M. K., & Hammad, W. A. (2022b). Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10–20. https://doi.org/10.1016/J.SAJCE.2022.01.002
  12. Dev, S., Kruse, R. L., Hamilton, J. P., & Lutsenko, S. (2022). Wilson Disease: Update on Pathophysiology and Treatment. Frontiers in Cell and Developmental Biology, 10(May), 1–8. https://doi.org/10.3389/fcell.2022.871877
  13. Doble, J., Grabau, E., Henry, K., Rosenberg, R., Tomasko, C., Karshbaum, M., Gute, B., & Wainman, J. W. (2024). Visualización del principio de Le Châtelier mediante titulaciones complexométricas de plomo EDTA. Revista de Educación Química, 102(1), 1–466.
  14. Eleryan, A., Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Eldeeb, T. M., El Nemr, M. A., Hassaan, M. A., Ragab, S., Osibote, O. A., Kusuma, H. S., Darmokoesoemo, H., & Nemr, A. El. (2024). Copper(II) ion removal by chemically and physically modified sawdust biochar. Biomass Conversion and Biorefinery, 14(8), 9283–9320.
  15. Elewa, A. M., Amer, A. A., Attallah, M. F., Gad, H. A., Al-Ahmed, Z. A. M., & Ahmed, I. A. (2023). Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. Materials, 16(3). https://doi.org/10.3390/ma16031251
  16. El-Nemr, M. A., El Nemr, A., Hassaan, M. A., Ragab, S., Tedone, L., De Mastro, G., & Pantaleo, A. (2022). Microporous Activated Carbon from Pisum sativum Pods Using Various Activation Methods and Tested for Adsorption of Acid Orange 7 Dye from Water. Molecules, 27(15). https://doi.org/10.3390/molecules27154840
  17. Galvis, D. E., Lozano, A. S., & Guerrero, C. A. (2024). Valorización de vainas de guisante: Explorando la influencia de la relación biomasa/agua, el tamaño de partícula, la agitación y los catalizadores en las plataformas químicas y la producción de biocarbón. Sustainability, 16(17), 1–25.
  18. Ghibate, R., Chrachmy, M., Kerrou, M., Ben Baaziz, M., Alaqarbeh, M., Amechrouq, A., Taouil, R., & Senhaji, O. (2025). Eco-friendly adsorption of Rhodamine B dye using Punica granatum peel from an aqueous medium. Green Analytical Chemistry, 12, 100201. https://doi.org/10.1016/J.GREEAC.2024.100201
  19. Gutiérrez, P., Aldas, M., Gavilanes, D., Cadena, F., & Valle, V. (2025). Corn cob valorization: Synthesis of a polymer based on crystalline cellulose with poly(ethylene glycol) diacrylate and N-vinylcaprolactam. Cleaner Engineering and Technology, 27, 101019. https://doi.org/10.1016/J.CLET.2025.101019
  20. Herrera, A., Tejada-Tovar, C., & González-Delgado, Á. D. (2020). Enhancement of cadmium adsorption capacities of agricultural residues and industrial fruit byproducts by the incorporation of Al2O3nanoparticles. ACS Omega, 5(37), 23645–23653. https://doi.org/10.1021/acsomega.0c02298
  21. Isaac, R., & Siddiqui, S. (2022). Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: Isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresource Technology Reports, 18, 101004. https://doi.org/10.1016/J.BITEB.2022.101004
  22. Ivanchenko, A., Soroka, O., Yelatontsev, D., & Panasenko, V. (2025). Heavy metal ions removal from an aqueous solution using an adsorbent derived from walnut shell: Equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 321, 101048. https://doi.org/10.1016/J.DWT.2025.101048
  23. Jiang, W., Hu, Y., & Zhu, Z. (2022). Biosorption Characteristic and Cytoprotective Effect of Pb2+, Cu2+ and Cd2+ by a Novel Polysaccharide from Zingiber strioatum. Molecules, 27(22). https://doi.org/10.3390/molecules27228036
  24. Kadimpati, K. K., Sanneboina, S., Thadikamala, S., & Mondithoka, K. P. (2024). Biosorption of Cu+ 2 by Green Algae, Ulva fasciata: Optimization by Response Surface Methodology. National Academy Science Letters, 47(6), 633–637. https://doi.org/10.1007/s40009-024-01419-y
  25. Kuśmierek, K., Świątkowski, A., Zienkiewicz-Strzałka, M., & Deryło-Marczewska, A. (2025). Studies of the kinetics and isotherms of copper ions adsorption on APTES-modified silica materials. Desalination and Water Treatment, 321, 100965. https://doi.org/10.1016/J.DWT.2024.100965
  26. Li, Y., Yang, J., Zhang, Z., & Yuan, J. (2024). Optimization of phosphorus adsorption on honeycomb briquette ash by application of response surface methodology. Desalination and Water Treatment, 317, 100224. https://doi.org/10.1016/J.DWT.2024.100224
  27. Maldonado, I., Miranda-Mamani, J., & Paredes-Espinal, C. (2023). Heavy metals and ecological alterations resulting from wastewater discharge in Inner Puno Bay, Lake Titicaca. Environmental Nanotechnology, Monitoring & Management, 20, 100903. https://doi.org/10.1016/J.ENMM.2023.100903
  28. Medhi, H., Chowdhury, P. R., Baruah, P. D., & Bhattacharyya, K. G. (2020). Kinetics of Aqueous Cu(II) Biosorption onto Thevetia peruviana Leaf Powder. ACS Omega, 5(23), 13489–13502. https://doi.org/10.1021/acsomega.9b04032
  29. Meftah, S., Meftah, K., Drissi, M., Radah, I., Malous, K., Amahrous, A., Chahid, A., Tamri, T., Rayyad, A., Darkaoui, B., Hanine, S., El Hassan, O., & Bouyazza, L. (2025). Heavy metal polluted water: Effects and sustainable treatment solutions using bio adsorbents aligned with the SDGs. Discover Sustainability, 6(137), 20.
  30. MIDAGRI. (2021). Agro en cifras: Boletín estadístico anual 2021.
  31. Mohammad, A., Asgedom, A., K., M., A., T., T., G., & Van der Bruggen, B. (2024). Evaluación de la calidad del agua subterránea para beber utilizando un índice de calidad en Abyi Adi, Tigrai, norte de Etiopía. Heliyon, 10(16).
  32. Mohammed, A. H., Shartooh, S. M., & Trigui, M. (2025). Biosorption and Isotherm Modeling of Heavy Metals Using Phragmites australis. Sustainability (Switzerland), 17(12), 1–17. https://doi.org/10.3390/su17125366
  33. Montgomery, D. (2020). Design and analysis of experiments (10ma ed.). John Wiley & Sons.
  34. Mozaffari Majd, M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A., & Sillanpää, M. (2022). Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Science of The Total Environment, 812, 151334. https://doi.org/10.1016/J.SCITOTENV.2021.151334
  35. Ndekei, A., Gitita, M.-, Njomo, N., & Mbui, D. (2021). Synthesis and Characterization of Rice Husk Biochar and its Application in the Adsorption Studies of Lead and Copper. International Research Journal of Pure and Applied Chemistry, June, 36–50. https://doi.org/10.9734/irjpac/2021/v22i430402
  36. Packiyam, T., Raja, K., Chengalvarayan, D. V., Anbalagan, S., Ragini, Y. P., & Sundaram, V. A. (2025). Green energy-compatible cadmium (II) biosorption from wastewater using Codium decorticatum: Environmental impact, adsorption dynamics, and neural network modeling. Next Materials, 8, 100619. https://doi.org/10.1016/J.NXMATE.2025.100619
  37. Raji, Z., Karim, A., Karam, A., & Khalloufi, S. (2023). Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775–805. https://doi.org/10.3390/waste1030046
  38. Shamohammadi, S., Khajeh, M., Fattahi, R., & Kadkhodahosseini, M. (2022). Introducing the new model of chemical adsorption for heavy metals by Jacobi activated carbon adsorbents, Iranian activated carbon and blowy sand. Case Studies in Chemical and Environmental Engineering, 6, 100220. https://doi.org/10.1016/J.CSCEE.2022.100220
  39. Tenza, N. P., Schmidt, S., & Mahlambi, P. N. (2025). Unlocking the potential of Chlorella sp. biomass: an effective adsorbent for heavy metals removal from wastewater. Frontiers in Environmental Chemistry, 6(April), 1–15. https://doi.org/10.3389/fenvc.2025.1531726
  40. Wu, Y., You, Y., Wu, L., Tong, L., Zhang, F., Yang, J., & Zheng, J. (2025). Physicochemical and structural characterization coupled with untargeted metabolomics analysis of metabolic variations in different bamboo shoot powders. LWT, 224, 117820. https://doi.org/10.1016/J.LWT.2025.117820
  41. Zhang, Y., He, Q., Yang, Y., & Bai, Q. (2024). Preparation of a biochar-lignosulfonate composite material and its adsorption performance for Cu2+. RSC Advances, 14(31), 22335–22343. https://doi.org/10.1039/d4ra00588k