Vol. 11 Núm. 4 (2022): Revista de Investigaciones
Artí­culos Originales

PRODUCCIÓN DE METANO DE LA EXCRETA ANIMAL PARA EL APROVECHAMIENTO ENERGÉTICO EN LA REGIÓN ALTOANDINA

Víctor Román Salinas
Universidad Nacional del Altiplano de Puno
"Revista de Investigaciones"

Publicado 2022-12-30

Palabras clave

  • Palabras clave: bioabono, biodigestor, biogás, biol, excreta, metano.

Cómo citar

Román Salinas, V. (2022). PRODUCCIÓN DE METANO DE LA EXCRETA ANIMAL PARA EL APROVECHAMIENTO ENERGÉTICO EN LA REGIÓN ALTOANDINA (B. . Roque Huanca , Trans.). Revista De Investigaciones, 11(4), 239-253. https://doi.org/10.26788/ri.v11i4.3514

Resumen

La excreta fecal del ganado puede ser perjudicial para el medio ambiente si no se tiene un manejo adecuado. El trabajo tuvo como objetivo determinar la producción de metano (CH4) a partir de la excreta de ganado vacuno, como fuente alternativa de energía para uso doméstico. El método consistió en someter 8,9 kg de excreta fresca a digestión anaeróbica en biodigestor discontinuo, durante 45 días. Los resultados indican que la fermentación desarrolla una temperatura de 31,20 ± 0,49 °C y un pH de 6,98 ± 0,17; la relación entre la producción de biogás y el tiempo de fermentación fue alta (R2 = 0,985) y significativa (p < 0,05), obteniéndose 184,87 ± 1,09 L de biogás, con un contenido de 62,07 ± 1,24 % de CH4, 31,05 ± 0,53 % de dióxido de carbono (CO2) y otros gases menores, y 32,05 L de sustancia líquida como efluente (biol + biosol), con una demanda química de oxígeno (DQO) reducida en 74 % con respecto al afluente. El biogás obtenido tuvo un contenido energético de 3,466 Mcal/m3. A partir de los resultados se concluye que la fermentación anaeróbica de la excreta fecal de ganado vacuno puede ser una alternativa para la obtención de biogás de uso doméstico y biol como bioabono para la agricultura.

Referencias

  1. Achinas, Spyridon, Yu Li, Vasileios Achinas, Gerrit Jan, and Willem Euverink. 2018. “In Fl Uence of Sheep Manure Addition on Biogas Potential and Methanogenic Communities during Cow Dung Digestion under Mesophilic Conditions,” 1–7. https://doi.org/10.1016/j.serj.2018.03.003.
  2. Admin, Lpelc. 2019. “Biogas Utilization and Cleanup.” Livestock and Poultry Environmental Learning Community, 2019.
  3. Alavi-Borazjani, S. Azadeh, Isabel Capela, and Luís A.C. Tarelho. 2020. “Over-Acidification Control Strategies for Enhanced Biogas Production from Anaerobic Digestion: A Review.” Biomass and Bioenergy 143 (June): 105833. https://doi.org/10.1016/j.biombioe.2020.105833.
  4. Amer, Haidy. 2020. “The Impact of Renewable Energy Consumption on the Human Development Index in Selected Countries: Panel Analysis (1990-2015).” International Journal of Economy, Energy and Environment 5 (4): 47–68. https://doi.org/10.11648/j.ijeee.20200504.12.
  5. BaltrÄ—nas, Pranas, Vitalij Kolodynskij, and Davyd Urbanas. 2019. “Biogas Production from Chicken Manure at Different Organic Loadings Using a Special Zeolite Additive (ZeoVit Sorbent).” Journal of Renewable and Sustainable Energy 11 (063101): 1–11. https://doi.org/10.1063/1.5119840.
  6. Barrera-Cardoso, Ernesto, Leyanet Odales-Bernal, Annerys Carabeo-Pérez, and Yasmani Alba-Reyes. 2020. “Recopilación de Aspectos Teóricos Sobre Las Tecnologías de Producción de Biogás a Escala Rural.” Tecnología Química 40 (2): 303–21.
  7. Bijarchiyan, Mohadeseh, Hadi Sahebi, and Saeed Mirzamohammadi. 2020. “A Sustainable Biomass Network Design Model for Bioenergy Production by Anaerobic Digestion Technology: Using Agricultural Residues and Livestock Manure.” Energy, Sustainability and Society 10 (1): 1–17. https://doi.org/10.1186/s13705-020-00252-7.
  8. Black, John L., Thomas M. Davison, and Ilona Box. 2021. “Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies.” Animals 11 (4): 1–20. https://doi.org/10.3390/ani11040951.
  9. Bond, Tom, and Michael R. Templeton. 2011. “History and Future of Domestic Biogas Plants in the Developing World.” Energy for Sustainable Development 15 (4): 347–54. https://doi.org/10.1016/j.esd.2011.09.003.
  10. Bonilla Cárdenas, Jorge Armando, and Clemente Lemus Flores. 2012. “Emisión de Metano Entérico Por Rumiantes y Su Contribución Al Calentamiento Global y Al Cambio Climático. Revisión.” Revista Mexicana De Ciencias Pecuarias 3 (2): 215–46.
  11. Carhuancho, Fanny ., Juan . Guerrero, and Judith . Ramirez. 2012. “Aprovechamiento Del Estiércol de Gallina Para La Elaboración de Biol En Biodigestores Tipo Batch Como Propuesta Al Manejo de Residuo Avícola.” XIX Simposio Peruano de Energía Solar y Del Ambiente (XIX - SPES), no. 2010: 12-17pp. http://dx.doi.org/10.21704/ac.v76i1.773
  12. Carmona, Juan C, Diana M Bolívar, and Luis A Giraldo. 2005. “El Gas Metano En La Producción Ganadera y Alternativas Para Medir Sus Emisiones y Aminorar Su Impacto a Nivel Ambiental y Productivo.” Revista Colombiana de Ciencias Pecuarias.
  13. Castro Rivera, Rigoberto, María Myrna Solís Oba, Vanesa Chicatto Gasperín, and Aída Solís Oba. 2020. “Biogas Production through Co-Digestion of Cattle Waste and Agricultural Residues of Tomato Cultivation (Solanum Lycopersicum L.).” Revista Internacional de Contaminacion Ambiental 36 (3): 529–39. https://doi.org/10.20937/RICA.53545.
  14. Chadwick, D R, L M Cardenas, M S Dhanoa, N Donovan, T Misselbrook, J R Williams, R E Thorman, et al. 2018. “The Contribution of Cattle Urine and Dung to Nitrous Oxide Emissions: Quantification of Country Specific Emission Factors and Implications for National Inventories.” Science of the Total Environment 635: 607–17. https://doi.org/10.1016/j.scitotenv.2018.04.152.
  15. Condori-Mamani, Pastor, Manuel Gregorio Loza-Murguia, Humberto Nelson Sainz-Mendoza, Jorge Guzmán-Calla, Francisco Mamani-Pati, Félix Marza-Mamani, and Diego Eddy Gutiérrez-Gonzáles. 2017. “ Evaluación Del Efecto Del Biol Sobre Catorce Accesiones de Papa Nativa ( Solanum Ssp.) En La Estación Experimental Kallutaca .” Journal of the Selva Andina Biosphere 5 (1): 15–28. https://doi.org/10.36610/j.jsab.2017.050100015.
  16. Cotrina Cabello, Guillermo Gomer, Lorgio Noel Masgo Sanchez, Yosely Yomayra Tumbay Ambrocio, Italo Wile Alejos Patiño, Pedro Córdova Mendoza, and Alberto Rivelino Patiño Rivera. 2020. “Efectos Del Biol y Súper Biol En La Producción Agroecológica de La Lechuga (Lactuca Sativa) Variedad Seda En El Centro Poblado de Chinchopampa –Chaglla – Pachitea – Huánuco.” Journal of the Academy, no. 3: 17–31. https://doi.org/10.47058/joa3.2.
  17. Criollo Brayhan, Alvarado Jose David y Numpaque Humberto. 2017. “Control Pid De Temperatura Y Dosificación De Ph Para La Producción De Gas Metano a Partir De La Digestión Anaeróbica De Residuos Sólidos Orgánicos.” Revista Colombiana De Tecnologias De Avanzada (Rcta) 2 (24). https://doi.org/10.24054/16927257.v24.n24.2014.2339.
  18. Deublein, D. & Steinheuser, A. 2008. Biogas from Waste and Renewable Resources and Introduction. Wiley-VCH Verlag GmbH and Co KGaA. Weinheim. 443p.
  19. Ercumen, Ayse, Amy J Pickering, Laura H Kwong, Benjamin F Arnold, Sarker Masud Parvez, Mahfuja Alam, Debashis Sen, et al. 2017. “Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. Coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh.” Environmental Science & Technology 91: 8725–34. https://doi.org/10.1021/acs.est.7b01710.
  20. Esposito, Giovanni, Luigi Frunzo, Flavia Liotta, Antonio Panico, and Francesco Pirozzi. 2012. “Bio-Methane Potential Tests To Measure The Biogas Production From The Digestion and Co-Digestion of Complex Organic Substrates,” 1–8.
  21. Estrada Paredes, Juan José Consultor especialista / Representación FAO Bolivia. 2012. “Invernaderos o Fitotoldos.” Guía Para La Construcción de Invernaderos o Fitotoldos Una Alternativa Para Garantizar La Seguridad y Soberanía Alimentaria En Emergencias.
  22. Fan, Qingshan, Metha Wanapat, Tianhai Yan, and Fujiang Hou. 2020. “Altitude Influences Microbial Diversity and Herbage Fermentation in the Rumen of Yaks.” BMC Microbiology 20 (370): 1–13. https://doi.org/10.1186/s12866-020-02054-5.
  23. FAO. 2018. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals. Rome: Food and Agricultural Organization.
  24. FAO, MINENERGIA, PNUD, and GEF. 2011. “Manual Del Biogás.” Proyecto CHI/00/G32, 120. http://www.fao.org/docrep/019/as400s/as400s.pdf.
  25. Fatin, Muhammad Hanif, and A Husaini Leila Kalsum. 2021. “Effect of Adding Palm Oil Mill Effluent ( POME ) and Slurry on Biogas From Cow Manure to Produced Methane Gas” 7: 75–80.
  26. Fernadez, Julia Martínes y Adrián. 2004. Cambio Climático Instituto Nacional de Ecología. Secretaria Del Medio Ambiente y Recursos Naturales. Primera Ed. Mexico.
  27. Freitas, F. F., S. S. De Souza, L. R.A. Ferreira, R. B. Otto, F. J. Alessio, S. N.M. De Souza, O. J. Venturini, and O. H. Ando Junior. 2019. “The Brazilian Market of Distributed Biogas Generation: Overview, Technological Development and Case Study.” Renewable and Sustainable Energy Reviews 101 (October 2018): 146–57. https://doi.org/10.1016/j.rser.2018.11.007.
  28. García, Andrés, Diego Rojas, Jhessica Mosquera, Ana Paola Becerra, Paola Acevedo, and Iván Cabeza. 2020. “Evaluación de La Producción de Biogás a Partir de La Digestión Anaeróbica de Tamos de Arroz Pre-Tratado.” Encuentro Internacional de Educación En Ingeniería. https://acofipapers.org/index.php/eiei/article/view/806.
  29. Garcia, Natalia Herrero, Andrea Mattioli, Aida Gil, Nicola Frison, Federico Battista, and David Bolzonella. 2019. “Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas.” Renewable and Sustainable Energy Reviews 112 (August 2018): 1–10. https://doi.org/10.1016/j.rser.2019.05.040.
  30. Gheorghe, LÇŽzÇŽroiu, MihÇŽescu Lucian, Mavrodin MÇŽdÇŽlina, and Bondrea Andreya. 2017. “Influence of Energy Characteristics of Biogas Obtained by Anaerobic Fermentation of Animal Proteins on Combustion Performance.” 2017 11th International Conference on Electromechanical and Power Systems, SIELMEN 2017 - Proceedings 2017-Janua: 245–49. https://doi.org/10.1109/SIELMEN.2017.8123326.
  31. Gielen, Dolf, Francisco Boshell, Deger Saygin, Morgan D Bazilian, Nicholas Wagner, and Ricardo Gorini. 2019. “The Role of Renewable Energy in the Global Energy Transformation.” Energy Strategy Reviews 24: 38–50. https://doi.org/10.1016/j.esr.2019.01.006.
  32. Grossi, Giampiero, Pietro Goglio, Andrea Vitali, and Adrian G Williams. 2019. “Livestock and Climate Change : Impact of Live- Stock on Climate and Mitigation Strategies” 9 (1): 1–8. https://doi.org/10.1093/af/vfy034.
  33. Hargrove, James L. 2006. “History of the Calorie in Nutrition.” Journal of Nutrition 136 (12): 2957–61. https://doi.org/10.1093/jn/136.12.2957.
  34. Haryanto, A., B. P. Sugara, M. Telaumbanua, and R. A.B. Rosadi. 2018. “Anaerobic Co-Digestion of Cow Dung and Rice Straw to Produce Biogas Using Semi-Continuous Flow Digester: Effect of Urea Addition.” IOP Conference Series: Earth and Environmental Science 147 (1). https://doi.org/10.1088/1755-1315/147/1/012032.
  35. Heiker, Mathias, Matthias Kraume, Anica Mertins, Tim Wawer, and Sandra Rosenberger. 2021. “Biogas Plants in Renewable Energy Systems—a Systematic Review of Modeling Approaches of Biogas Production.” Applied Sciences (Switzerland) 11 (8). https://doi.org/10.3390/app11083361.
  36. Helmenstine, Annie Marie. 2021. “Learn About STP in Chemistry: Understanding Standard Temperature and Presure.” February 01, 2021. 2021.
  37. Höglund-Isaksson, Lena, Adriana Gómez-Sanabria, Zbigniew Klimont, Peter Rafaj, and Wolfgang Schöpp. 2020. “Technical Potentials and Costs for Reducing Global Anthropogenic Methane Emissions in the 2050 Timeframe –Results from the Gains Model.” Environmental Research Communications 2 (2). https://doi.org/10.1088/2515-7620/ab7457.
  38. Indrawan, Natarianto, Sunil Thapa, Muhammad Ery Wijaya, Muhammad Ridwan, and Don Hee Park. 2018. “The Biogas Development in the Indonesian Power Generation Sector.” Environmental Development 25: 85–99. https://doi.org/10.1016/j.envdev.2017.10.003.
  39. Jose, Christian, and Rojas Reina. 2020. “Estudio Integral de Un Biodigestor Desde El Punto de Vista Microbiológico y Uso Del Biol Como Bioabono En Los Llanos Orientales de Colombia the Eastern Plains of Colombia,” 123–28.
  40. Juliana Vasco-Correa, Sami Khanal, Ashish Manandhar, Ajay Shah*. 2019. “Anaerobic Digestion for Bioenergy Production: Global Status, Environmental and Techno_economic Implications, and Government Policie.” Reseachgate, no. 509: 1–21.
  41. Kalsum, Leila, and Zainuddin Muchtar. 2020. “The Analysis Of Biogas Fermentation Time From Cow Manure On Fixed Dome Biodigester Batch Systems The Analysis Of Biogas Fermentation Time From Cow Manure On Fixed Dome Biodigester Batch Systems.” https://doi.org/10.1088/1742-6596/1500/1/012043.
  42. Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico. 2014. “Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions.” Journal of Dairy Science 97 (6): 3231–61. https://doi.org/10.3168/jds.2013-7234.
  43. Kulkarni, Milind Balbhim, and P. M. Ghanegaonkar. 2019. “Methane Enrichment of Biogas Produced from Floral Waste: A Potential Energy Source for Rural India.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects 41 (22): 2757–68. https://doi.org/10.1080/15567036.2019.1571126.
  44. Kumari, Shilpi, R. K. Fagodiya, Moonmoon Hiloidhari, R. P. Dahiya, and Amit Kumar. 2020. “Methane Production and Estimation from Livestock Husbandry: A Mechanistic Understanding and Emerging Mitigation Options.” Science of the Total Environment 709: 136135. https://doi.org/10.1016/j.scitotenv.2019.136135.
  45. León Torres, Carlos Alberto, Carlos Nomberto Rodríguez, Gerson Allen Mendoza Avalos, Cecilia Betzabet Bardales Vásquez, Jeisson Cabos Sánchez, and Miguel Angel Barrena Gurbillón. 2019. “Diseño e Implementación de Una Planta Piloto de Producción de Biogás, Biol y Biosol.” Arnaldoa 26 (3): 1017–32. https://doi.org/10.22497/arnaldoa.263.26311.
  46. Lin, Richen, Jun Cheng, Lingkan Ding, and Jerry D. Murphy. 2018. “Improved Efficiency of Anaerobic Digestion through Direct Interspecies Electron Transfer at Mesophilic and Thermophilic Temperature Ranges.” Chemical Engineering Journal 350: 681–91. https://doi.org/10.1016/j.cej.2018.05.173.
  47. Manisalidis, Ioannis, Elisavet Stavropoulou, Agathangelos Stavropoulos, and Eugenia Bezirtzoglou. 2020. “Environmental and Health Impacts of Air Pollution: A Review.” Frontiers in Public Health 8 (14): 1–13. https://doi.org/10.3389/fpubh.2020.00014.
  48. Martí Ortega, Nuria. 2006. “Phosphorus Precipitation in Anaerobic Digestion Process.” Digestion, 25.
  49. Matos, Camila F, Juliana L Paes, Érika F M Pinheiro, and David V B De Campos. 2017. “Biogas Production from Dairy Cattle Manure, under Organic and Conventional Production Systems.” Eng. Agríc., Jaboticabal 37 (6): 1081–90.
  50. Morales, Victoria Eugenia. 2021. “Macrophomina Phaseolina EN SOYA FERTILIZADA CON LOS” 33 (2): 91–104.
  51. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). 2019. Guía Teórico-Práctica Sobre El Biogás y Los Biodigestores. Buenos Aires - Argentina.
  52. Palacios, Lessly K, Gabriela Obregón, Jhonny Wilfredo Valverde, Carlos Alberto Castañeda, and Elmer G Benites. 2020. “Calorific Value of Biogas Obtained by Cavia Porcellus Biomass.” Chemical Engineering Transactions 80: 271–76. https://doi.org/10.3303/CET2080046.
  53. Pannucharoenwong, Nattadon, Atichit Worasaen, Chatchai Benjapiyaporn, Jarinee Jongpluempiti, and Ponthep Vengsungnle. 2017. “Comparison of Bio-Methane Gas Wobbe Index in Different Animal Manure Substrate.” Energy Procedia 138: 273–77. https://doi.org/10.1016/j.egypro.2017.10.056.
  54. Pittam, D A, and G Pilcher. 1972. “Measurements of Heats of Combustion by Flame Calorimetry. Part 8.- Methane, Etane, Propane, n-Butane and 2-Methylpropane.” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 68 (0): 2224–29. https://doi.org/10.1039/f19726802224.
  55. Reyes, Edwin. 2017. “Generacion de Biogas Mediante El Proceso de Digestion Anaerobia, a Partir Del Aprovechamiento de Sustrato Organico.” Farem 17 (5): 11–22.
  56. Roubík, Hynek, and Jana Mazancová. 2020. “Suitability of Small-Scale Biogas Systems Based on Livestock Manure for the Rural Areas of Sumatra.” Environmental Development 33 (April 2019): 100505. https://doi.org/10.1016/j.envdev.2020.100505.
  57. Sasmaz, Mahmut Unsal, Emre Sakar, and Yunus Emre Yayla. 2020. “The Relationship between Renewable Energy and Human Development in OECD Countries : A Panel Data Analysis.” Sustainability 12 (7450): 1–16.
  58. Schiochet Pinto, Luane, Daywes Pinheiro Neto, Anésio de Leles Ferreira Filho, and Elder Geraldo Domingues. 2020. “An Alternative Methodology for Analyzing the Risk and Sensitivity of the Economic Viability for Generating Electrical Energy with Biogas from the Anaerobic Bio-Digestion of Vinasse.” Renewable Energy 155: 1401–10. https://doi.org/10.1016/j.renene.2020.04.036.
  59. Seman, S Z A, I Idris, A Abdullah, I K Shamsudin, and M R Othman. 2019. “Optimizing Purity and Recovery of Biogas Methane Enrichment Process in a Closed Landfill.” Renewable Energy 131: 1117–27. https://doi.org/10.1016/j.renene.2018.08.057.
  60. Shi, Yan, Huaquan Yang, Shihua Zhou, Aiguo Wang, and Xingdong Lv. 2018. “Effect of Atmospheric Pressure on Performance of AEA and Air Entraining Concrete.” Hindawi: Advances in Materials Science and Engineering 2018 (6528412): 1–7. https://doi.org/10.1155/2018/6528412.
  61. Uddin, Waqar, B. Khan, Neelofar Shaukat, Muhammad Majid, G. Mujtaba, Arshad Mehmood, S. M. Ali, U. Younas, Muhammad Anwar, and Abdullah M. Almeshal. 2016. “Biogas Potential for Electric Power Generation in Pakistan: A Survey.” Renewable and Sustainable Energy Reviews 54: 25–33. https://doi.org/10.1016/j.rser.2015.09.083.
  62. Ukpai, P A, and M N Nnabuchi. 2012. “Comparative Study of Biogas Production from Cow Dung, Cow Pea and Cassava Peeling Using 45 Litres Biogas Digester.” Advances in Applied Science Research 3 (3): 1864–69. www.pelagiaresearchlibrary.com.
  63. Unpaprom, Yuwalee, Tipsukhon Pimpimol, Kanda Whangchai, and Rameshprabu Ramaraj. 2021. “Sustainability Assessment of Water Hyacinth with Swine Dung for Biogas Production, Methane Enhancement, and Biofertilizer.” Biomass Conversion and Biorefinery 11 (3): 849–60. https://doi.org/10.1007/s13399-020-00850-7.
  64. Vijn, Sandra, Devan Paulus Compart, Nikki Dutta, Athanasios Foukis, Matthias Hess, Alexander N. Hristov, Kenneth F. Kalscheur, et al. 2020. “Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle.” Frontiers in Veterinary Science 7 (December): 1–9. https://doi.org/10.3389/fvets.2020.597430.
  65. Wainaina, Steven, Mukesh Kumar Awasthi, Surendra Sarsaiya, Hongyu Chen, Ekta Singh, Aman Kumar, B. Ravindran, et al. 2020. “Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies.” Bioresource Technology 301 (January): 122778. https://doi.org/10.1016/j.biortech.2020.122778.
  66. Wang, Xiaojiao, Gaihe Yang, Yongzhong Feng, Guangxin Ren, and Xinhui Han. 2012. “Optimizing Feeding Composition and Carbon-Nitrogen Ratios for Improved Methane Yield during Anaerobic Co-Digestion of Dairy, Chicken Manure and Wheat Straw.” Bioresource Technology 120: 78–83. https://doi.org/10.1016/j.biortech.2012.06.058.