OBTENCIÓN DE CARBONATO DE LITIO MEDIANTE PROCESO DE LIXIVIACIÓN, CONCENTRACIÓN, EVAPORACIÓN Y PRECIPITACIÓN
Publicado 2022-06-30
Palabras clave
- Palabras clave: Concentración, lixiviación, litio. purificación, precipitación.
Derechos de autor 2022 German Quille Calizaya

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
El mineral de litio de Macusani Puno Perú, se ha estimado un recurso de 4.7 millones de toneladas como carbonato de litio con una ley de 3500 ppm de Li. Tiene como objetivo obtener carbonato de litio mediante proceso de lixiviación, concentración, evaporación y precipitación. El tratamiento del mineral litio, se inició con las operaciones de chancado y molienda, en esta etapa se utilizó una chancadora de laboratorio y un pulverizador de anillos, el mineral fue molido hasta 87 % malla -200. Se obtuvo lixiviado de Li2SO4 mediante el proceso por tostación de mineral de litio con ácido sulfúrico concentrado a temperatura de 250 °C, el rendimiento de extracción alcanzó al 93 % de Li, así como la disolución del mineral con fluoruro de sodio y ácido sulfúrico en autoclave a temperatura de 125 ºC y alta presión (0,2 MPa) por 3 horas, el porcentaje de extracción de litio alcanzó al 92 %. En la segunda etapa se purificó los lixiviados de litio con cal, las impurezas fueron removidas al 99,92 %, se incrementó la concentración de calcio debido al uso de cal, la presencia de este elemento fue eliminado por precipitación con oxalato de amonio. Luego de la purificación la solución se encuentra libre de impurezas, en seguida de concentró el litio por evaporación de 1,2 g/L hasta 18,7 g/L de Li. El concentrado de litio se precipitó con carbonato de sodio a temperatura de 95 °C, obteniéndose el carbonato de litio con una pureza de 98,80 %. Se utilizaron tres diseños experimentales. Se obtuvo carbonato de litio de grado técnico mediante procesos de tratamiento químico-metalúrgicos.
Referencias
- Abdullah, A. A., Oskierski, H. C., Altarawneh, M., Senanayake, G., Lumpkin, G., & Dlugogorski, B. Z. (2019). Phase transformation mechanism of spodumene during its calcination. Minerals Engineering, 140, 105883. https://doi.org/https://doi.org/10.1016/j.mineng.2019.105883
- Aylmore, M. G., Merigot, K., Rickard, W. D. A., Evans, N. J., McDonald, B. J., Catovic, E., & Spitalny, P. (2018). Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium. Minerals Engineering, 119, 137–148. https://doi.org/https://doi.org/10.1016/j.mineng.2018.01.010
- Cabello, J. (2021). Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geology Reviews, 128, 103883. https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103883
- Chaves, C., Pereira, E., Ferreira, P., & Guerner Dias, A. (2021). Concerns about lithium extraction: A review and application for Portugal✰. The Extractive Industries and Society, 8(3), 100928. https://doi.org/https://doi.org/10.1016/j.exis.2021.100928
- Chen, Y., Tian, Q., Chen, B., Shi, X., & Liao, T. (2011). Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process. Hydrometallurgy, 109(1), 43–46. https://doi.org/https://doi.org/10.1016/j.hydromet.2011.05.006
- Choubey, P. K., Kim, M., Srivastava, R. R., Lee, J., & Lee, J.-Y. (2016). Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering, 89, 119–137. https://doi.org/https://doi.org/10.1016/j.mineng.2016.01.010
- Gasafi, E., & Pardemann, R. (2020). Processing of spodumene concentrates in fluidized-bed systems. Minerals Engineering, 148, 106205. https://doi.org/https://doi.org/10.1016/j.mineng.2020.106205
- Grosjean, C., Miranda, P. H., Perrin, M., & Poggi, P. (2012). Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews, 16(3), 1735–1744. https://doi.org/https://doi.org/10.1016/j.rser.2011.11.023
- Gu, G., & Gao, T. (2021). Sustainable production of lithium salts extraction from ores in China: Cleaner production assessment. Resources Policy, 74, 102261. https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102261
- GUO, H., YU, H., ZHOU, A., LÜ, M., WANG, Q., KUANG, G., & WANG, H. (2019). Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium. Transactions of Nonferrous Metals Society of China, 29(2), 407–415. https://doi.org/https://doi.org/10.1016/S1003-6326(19)64950-2
- Ibarra-Gutiérrez, S., Bouchard, J., Laflamme, M., & Fytas, K. (2021). Project economics of lithium mines in Quebec: A critical review. The Extractive Industries and Society, 100984. https://doi.org/https://doi.org/10.1016/j.exis.2021.100984
- Jiang, S., Zhang, L., Li, F., Hua, H., Liu, X., Yuan, Z., & Wu, H. (2020). Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. Journal of Environmental Management, 262, 110253. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110253
- Kim-Yen Phan-Thien a, Graeme C. Wright b, N. A. L. a. (2012). Inductively coupled plasma-mass spectrometry (ICP-MS) and -optical emission spectroscopy (ICP–OES) for determination of essential minerals in closed acid digestates of peanutsle. Food Chemistry, 134, 453–460.
- Kuang, G., Liu, Y., Li, H., Xing, S., Li, F., & Guo, H. (2018). Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy, 177, 49–56. https://doi.org/https://doi.org/10.1016/j.hydromet.2018.02.015
- Le Houx, J., & Kramer, D. (2021). X-ray tomography for lithium ion battery electrode characterisation — A review. Energy Reports, 7, 9–14. https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.063
- Li, H., Eksteen, J., & Kuang, G. (2019). Recovery of lithium from mineral resources: State-of-the-art and perspectives – A review. Hydrometallurgy, 189, 105129. https://doi.org/https://doi.org/10.1016/j.hydromet.2019.105129
- Liu, H., & Azimi, G. (2021). Process analysis and study of factors affecting the lithium carbonate crystallization from sulfate media during lithium extraction. Hydrometallurgy, 199, 105532. https://doi.org/https://doi.org/10.1016/j.hydromet.2020.105532
- London, D. (2018). Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101, 349–383. https://doi.org/https://doi.org/10.1016/j.oregeorev.2018.04.020
- Maneta, V., & Baker, D. R. (2019). The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada. Journal of Geochemical Exploration, 205, 106336. https://doi.org/https://doi.org/10.1016/j.gexplo.2019.106336
- Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192–208. https://doi.org/https://doi.org/10.1016/j.hydromet.2014.10.012
- Moosavi, A., Ljung, A.-L., & Lundström, T. S. (2021). Design considerations to prevent thermal hazards in cylindrical lithium-ion batteries: An analytical study. Journal of Energy Storage, 38, 102525. https://doi.org/https://doi.org/10.1016/j.est.2021.102525
- Mulwanda, J., Senanayake, G., Oskierski, H., Altarawneh, M., & Dlugogorski, B. Z. (2021). Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition. Hydrometallurgy, 201, 105538. https://doi.org/https://doi.org/10.1016/j.hydromet.2020.105538
- Quinteros-Condoretty, A. R., Albareda, L., Barbiellini, B., & Soyer, A. (2020). A Socio-technical Transition of Sustainable Lithium Industry in Latin America. Procedia Manufacturing, 51, 1737–1747. https://doi.org/https://doi.org/10.1016/j.promfg.2020.10.242
- Rioyo, J., Tuset, S., & Grau, R. (2022). Lithium extraction from spodumene by the traditional sulfuric acid process: A review. Mineral Processing and Extractive Metallurgy Review, 43(1), 97–106.
- Rodríguez, M., Rosales, G., & Ruíz, M. (2010). Ensayos preliminares de lixiviación de β-espodumeno en un autoclave de laboratorio. X Jornadas Argentinas de Tratamiento de Minerales. Salta, Argentina.
- Rosales, G. D., Resentera, A. C. J., Gonzalez, J. A., Wuilloud, R. G., & Rodriguez, M. H. (2019). Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching. Chemical Engineering Research and Design, 150, 320–326. https://doi.org/https://doi.org/10.1016/j.cherd.2019.08.009
- Tadesse, B., Makuei, F., Albijanic, B., & Dyer, L. (2019). The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering, 131, 170–184. https://doi.org/https://doi.org/10.1016/j.mineng.2018.11.023
- Vanderbruggen, A., Gugala, E., Blannin, R., Bachmann, K., Serna-Guerrero, R., & Rudolph, M. (2021). Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries. Minerals Engineering, 169, 106924. https://doi.org/https://doi.org/10.1016/j.mineng.2021.106924
- Vieceli, N., Nogueira, C. A., Pereira, M. F. C., Durão, F. O., Guimarães, C., & Margarido, F. (2018). Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite. Hydrometallurgy, 175, 1–10. https://doi.org/https://doi.org/10.1016/j.hydromet.2017.10.022
- Wang, W., Chen, W., & Liu, H. (2019). Hydrometallurgical preparation of lithium carbonate from lithium-rich electrolyte. Hydrometallurgy, 185, 88–92. https://doi.org/https://doi.org/10.1016/j.hydromet.2019.02.013
- Yates, J. (2006). No Title. Chemical Engineering Research and Design, 84(5), 416. https://doi.org/https://doi.org/10.1205/cherd.br.0605
- Yelatontsev, D., & Mukhachev, A. (2021). Processing of lithium ores: Industrial technologies and case studies – A review. Hydrometallurgy, 201, 105578. https://doi.org/https://doi.org/10.1016/j.hydromet.2021.105578