Vol. 14 No. 1 (2025): Revista de Investigaciones
Artí­culos Originales

Phytorremediating capacity of tarwi (Lupinus mutabilis Sweet) by incorporating organic environments into sweets contaminated by mercury from mining activity

Reynaldo Salas Sucaticona
Universidad Nacional del Altiplano
volumen 14 numero 1 2025

Published 2025-03-31

Keywords

  • Growth rate,
  • mercury removal,
  • organic amendment,
  • phytoextraction,
  • restoration

How to Cite

Salas Sucaticona, R. (2025). Phytorremediating capacity of tarwi (Lupinus mutabilis Sweet) by incorporating organic environments into sweets contaminated by mercury from mining activity. Revista De Investigaciones, 14(1), 18-30. https://doi.org/10.26788/ri.v14i1.6516

Abstract

Soil contamination by heavy metals is one of the main environmental concerns facing the world today, it causes soil deterioration, produces toxic effects on the living ecosystem and public health, the present research aims to evaluate the phytoremediation capacity of tarwi (Lupinus mutabilis Sweet) by incorporating organic amendments to soils contaminated by mercury from mining activity. The research corresponds to the quantitative approach and experimental design, the percentage of total mercury removal was determined, foliar analysis of leaf, root and stem of tarwi, absolute growth rates (TAC) and relative (TRC) were calculated and the agronomic characteristics in the contaminated soil were evaluated. The results revealed that the best treatment was T4 (SC + EV + T) with a reduction of 2.079 mg/kg which is equivalent to a removal of 31.82 %. In relation to the absolute (TAC) and relative (TRC) growth rates were significantly different in all treatments (p < 0.05), where the maximum daily increase in length was 0.678 cm/day (TAC) and 4.149 %/day (TRC) corresponding to T4 (SC + EV + T), the addition of organic amendments increases the organic matter in the soil, being the T4 treatment (SC + EV + T) the best treatment with an increase of 249 %. In conclusion, the bioavailability of Hg in soils tends to decrease through the addition of organic amendments, the differences in growth rates are directly related to the organic matter content and the incorporation of organic amendments improved the agronomic characteristics of the soil.

References

  1. Adejuyigbe, C. O., Goke, B., & Azeez, J. O. (2017). Effects of Poultry Manure on Some Soil Chemical Properties and Nutrient Bioavailability to Soybean Effects of Poultry Manure on Some Soil Chemical Properties and Nutrient Bioavailability to Soybean. Journal of Agriculture and Ecology Research International, January. https://doi.org/10.9734/JAERI/2017/32419
  2. Adnan, M., Xiao, B., Xiao, P., Zhao, P., Li, R., & Bibi, S. (2022). Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics, 10(5), 1–30. https://doi.org/10.3390/toxics10050231
  3. Ahmad, M., Usman, A. R. A., Al-Faraj, A. S., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2018). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327–339. https://doi.org/10.1016/j.chemosphere.2017.11.156
  4. Amirahmadi, E., Hojjati, S. M., & Kammann, C. (2020). applied sciences The Potential E ff ectiveness of Biochar Application to Reduce Soil Cd Bioavailability and Encourage Oak Seedling Growth. Applied Sciences.
  5. Apaza, R. H. (2016). Determinación del contenido de mercurio en agua y sedimentos del rio Suches-zona bajo Paria Cojata-Puno. Universidad Nacional del Altiplano.
  6. Asgari Lajayer, B., Khadem Moghadam, N., Maghsoodi, M. R., Ghorbanpour, M., & Kariman, K. (2019). Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environmental Science and Pollution Research, 26(9), 8468–8484. https://doi.org/10.1007/s11356-019-04241-y
  7. Ashraf, S., Ali, Q., Ahmad, Z., Ashraf, S., & Naeem, H. (2019). Ecotoxicology and Environmental Safety Phytoremediation : Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174(November 2018), 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068
  8. Basalirwa, D., Sudo, S., Wacal, C., Oo, A. Z., Sasagawa, D., Yamamoto, S., Masunaga, T., & Nishihara, E. (2020). Impact of fresh and aged palm shell biochar on N2O emissions, soil properties, nutrient content and yield of Komatsuna (Brassica rapa var. perviridis) under sandy soil conditions. Soil Science and Plant Nutrition, 66(2), 328–343. https://doi.org/10.1080/00380768.2019.1705737
  9. Bashir, S., Zhu, J., Fu, Q., & Hu, H. (2018). Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere, 194, 579–587. https://doi.org/10.1016/j.chemosphere.2017.11.162
  10. Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277
  11. Chang, J., Yang, Q., Dong, J., Ji, B., Si, G., He, F., Li, B., & Chen, J. (2019). Reduction in Hg phytoavailability in soil using Hg-volatilizing bacteria and biochar and the response of the native bacterial community. Microbial Biotechnology, 12(5), 1014–1023. https://doi.org/10.1111/1751-7915.13457
  12. Daljit, S. K., Keeren, S. R., & Ahmad, I. (2016). Phytoremediation of Soils Contaminated with Heavy Metals in Malaysia (A Review). Researchgate. https://doi.org/10.13140 / RG.2.1.1842.9841
  13. Eckley, C. S., Luxton, T. P., Stanfield, B., Baldwin, A., Holloway, J., Mckernan, J., & Johnson, M. G. (2022). Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site. EPA Public Access, 206. https://doi.org/10.1016/j.envpol.2020.116369.Effect
  14. Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234(December), 431–444. https://doi.org/10.1016/j.scienta.2017.12.039
  15. Eissa, M. A., & Almaroai, Y. A. (2019). Phytoremediation Capacity of Some Forage Plants Grown on a Phytoremediation Capacity of Some Forage Plants Grown on a Metals-Contaminated Soil. Researchgate, June. https://doi.org/10.1080/15320383.2019.1634674
  16. Fritz, M. M. C., Maxson, P. A., & Baumgartner, R. J. (2016). The mercury supply chain, stakeholders and their responsibilities in the quest for mercury-free gold. Resources Policy, 50, 177–192. https://doi.org/10.1016/j.resourpol.2016.07.007
  17. Hesami, R., Salimi, A., & Ghaderian, S. M. (2018). Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environmental Science and Pollution Research, 25(9), 8701–8714. https://doi.org/10.1007/s11356-017-1156-y
  18. Huang, L. min, Yu, G. wei, Zou, F. zhen, Long, X. xian, & Wu, Q. tang. (2018). Shift of soil bacterial community and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil by inorganic-organic mixed amendments: A field study. Applied Soil Ecology, 130(May), 104–119. https://doi.org/10.1016/j.apsoil.2018.05.014
  19. Jauregi, L., Epelde, L., Alkorta, I., & Garbisu, C. (2021). Antibiotic Resistance in Agricultural Soil and Crops Associated to the Application of Cow Manure-Derived Amendments From Conventional and Organic Livestock Farms. Frontiers in Veterinary Science, 8(February), 1–13. https://doi.org/10.3389/fvets.2021.633858
  20. Khan, M. A., Adnan, M., Basir, A., Fahad, S., Hafeez, A., Saleem, M. H., Ahmad, M., Gul, F., Shahwar, D., Subhan, F., Alamri, S., Hashem, M., & Rahman, I. U. (2023). Impact of Tillage and Potassium Levels and Sources on Growth, Yield and Yield Attributes of Wheat. Pakistan Journal of Botany, 55(1), 321–326. https://doi.org/10.30848/PJB2023-1(30)
  21. Kiran, Y. K., Barkat, A., CUI, X. qiang, FENG, Y., PAN, F. shan, TANG, L., & YANG, X. e. (2017). Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 16(3), 725–734. https://doi.org/10.1016/S2095-3119(16)61488-0
  22. Kustutan, F. (2019). The importance of the phytoremediation of soil contaminated with heavy metals. Researchgate, January.
  23. Li, C., Li, Y., Cheng, H., Jiang, C., & Zheng, L. (2022). Remediation of Soil Mercury by Modified Vermiculite-Montmorillonite and Its Effect on the Growth of Brassica chinensis L. Molecules, 27(16). https://doi.org/10.3390/molecules27165340
  24. Liang, Y., Cao, X., Zhao, L., & Arellano, E. (2014). Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: Implication on simultaneous remediation of contaminated soil and groundwater. Environmental Science and Pollution Research, 21(6), 4665–4674. https://doi.org/10.1007/s11356-013-2423-1
  25. Ling, N., Deng, K., Song, Y., Wu, Y., Zhao, J., Raza, W., Huang, Q., & Shen, Q. (2014). Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiological Research, 169(7–8), 570–578. https://doi.org/10.1016/j.micres.2013.10.004
  26. Liu, Y., Tie, B., Li, Y., Lei, M., Wei, X., Liu, X., & Du, H. (2018). Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicology and Environmental Safety, 163(May), 223–229. https://doi.org/10.1016/j.ecoenv.2018.07.081
  27. Lu, J., Lu, H., Wang, W., Feng, S. S., & Lei, K. (2021). Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis. Ecological Modelling, 455(May), 109633. https://doi.org/10.1016/j.ecolmodel.2021.109633
  28. Luo, W., Lu, Y., Wang, B., Tong, X., Wang, G., Shi, Y., Wang, T., & Giesy, J. P. (2009). Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environmental Monitoring and Assessment, 158(1–4), 507–517. https://doi.org/10.1007/s10661-008-0600-3
  29. Maulana, A., Sukma, V., Napendra, Z., Harianti, M., Prasetyo, T. B., & Herviyanti, H. (2023). Application of biochar from young coconut waste to inactivation of Hg contaminated ex-gold mining soil and corn (Zea mays L.) vegetative growth. AIP Conference Proceedings, 2730, 8–10. https://doi.org/10.1063/5.0127760
  30. Meng, L., Wu, Y., Mu, M., Wang, Z., Chen, Z., Wang, L., Ma, Z., Cui, G., & Yin, X. (2023). Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.). Frontiers in Plant Science, 14(March), 1–13. https://doi.org/10.3389/fpls.2023.1112002
  31. Meng, Q., Zhang, J., Li, X., Qu, X., Li, W., Zeng, X., & Ma, X. (2017). Soil quality as affected by long-term cattle manure application in solonetzic soils of Songnen Plain. Transactions of the Chinese Society of Agricultural Engineering, 33(6), 84–91. https://doi.org/10.11975/j.issn.1002-6819.2017.06.011
  32. Mina, O. R. (2017). Propuesta de mitigación de la contaminación por el uso de mercurio de la laguna La Rinconada. Universidad Nacional Jorge Basadre Grohmann.
  33. Mustafa, H. M., & Hayder, G. (2021). Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater. Ain Shams Engineering Journal, 12(3), 2585–2592. https://doi.org/10.1016/j.asej.2020.11.028
  34. O’Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126(February), 747–761. https://doi.org/10.1016/j.envint.2019.03.019
  35. Padoan, E., Hernandez Kath, A., Vahl, L. C., & Ajmone-Marsan, F. (2020). Potential Release of Zinc and Cadmium From Mine-Affected Soils Under Flooding, a Mesocosm Study. Archives of Environmental Contamination and Toxicology, 79(4), 421–434. https://doi.org/10.1007/s00244-020-00777-0
  36. Priya, A. K., Muruganandam, M., Ali, S. S., & Kornaros, M. (2023). Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics, 11(5). https://doi.org/10.3390/toxics11050422
  37. Qiu, B., Tao, X., Wang, H., Li, W., Ding, X., & Chu, H. (2021). Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. Journal of Analytical and Applied Pyrolysis, 155(February), 105081. https://doi.org/10.1016/j.jaap.2021.105081
  38. Rahi, A. A., Younis, U., Ahmed, N., Ali, M. A., Fahad, S., Sultan, H., Zarei, T., Danish, S., Taban, S., El Enshasy, H. A., Tamunaidu, P., Alotaibi, J. M., Alharbi, S. A., & Datta, R. (2022). Toxicity of Cadmium and nickel in the context of applied activated carbon biochar for improvement in soil fertility. Saudi Journal of Biological Sciences, 29(2), 743–750. https://doi.org/10.1016/j.sjbs.2021.09.035
  39. Rasool, A., Ghani, A., Nawaz, R., Ahmad, S., Shahzad, K., Rebi, A., Ali, B., Zhou, J., Ahmad, M. I., Tahir, M. F., Alwahibi, M. S., Elshikh, M. S., & Ercisli, S. (2023). Effects of Poultry Manure on the Growth, Physiology, Yield, and Yield-Related Traits of Maize Varieties. ACS Omega. https://doi.org/10.1021/acsomega.3c00880
  40. Saavedra-Mella, F., Liu, Y., Southam, G., & Huang, L. (2019). Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings. Environmental Pollution, 250, 676–685. https://doi.org/10.1016/j.envpol.2019.04.100
  41. Saldaña-Villanueva, K., Pérez-Vázquez, F. J., Ávila-García, I. P., Méndez-Rodríguez, K. B., Carrizalez-Yáñez, L., Gavilán-García, A., Vargas-Morales, J. M., Van-Brussel, E., & Diaz-Barriga, F. (2022). A preliminary study on health impacts of Mexican mercury mining workers in a context of precarious employment. Journal of Trace Elements in Medicine and Biology, 71(November 2021). https://doi.org/10.1016/j.jtemb.2022.126925
  42. Sawidis, T., Baycu, G., Cevahir–Öz, G., & Weryszko-Chmielewska, E. (2018). Effect of mercury on pollen germination and tube growth in Lilium longiflorum. Protoplasma, 255(3), 819–828. https://doi.org/10.1007/s00709-017-1192-y
  43. Simiele, M., Lebrun, M., Bourgerie, S., Trupiano, D., Scippa, G. S., & Morabito, D. (2022). Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra. Environments - MDPI, 9(7). https://doi.org/10.3390/environments9070087
  44. Sitarska, M., Traczewska, T., Hołtra, A., Zamorska-Wojdyła, D., Filarowska, W., & Hanus-Lorenz, B. (2023). Removal of mercury from water by phytoremediation process with Salvinia natans(L.) All. Environmental Science and Pollution Research, 85494–85507. https://doi.org/10.1007/s11356-023-27533-w
  45. Smolinska, B. (2015). Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil. Environmental Science and Pollution Research, 22(5), 3528–3537. https://doi.org/10.1007/s11356-014-3601-5
  46. Soremi, A., Adetunji, M., Adejuyigbe, C., Bodunde, J., & Azeez, J. (2017). Effects of Poultry Manure on Some Soil Chemical Properties and Nutrient Bioavailability to Soybean. Journal of Agriculture and Ecology Research International, 11(3), 1–10. https://doi.org/10.9734/jaeri/2017/32419
  47. Tang, X., Li, X., Liu, X., Hashmi, M. Z., Xu, J., & Brookes, P. C. (2015). Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere, 119, 177–183. https://doi.org/10.1016/j.chemosphere.2014.05.081
  48. Tarafder, S., Rahman, M. A., Hossain, M. A., & Chowdhury, M. A. H. (2020). Yield of Vigna radiata L. And post-harvest soil fertility in response to integrated nutrient management. Agricultural and Biological Sciences Journal, 6(1), 32–43.
  49. Ustiatik, R., Nuraini, Y., Suharjono, S., Jeyakumar, P., Anderson, C. W. N., & Handayanto, E. (2022). Endophytic bacteria promote biomass production and mercury-bioaccumulation of Bermuda grass and Indian goosegrass. International Journal of Phytoremediation, 24(11), 1184–1192. https://doi.org/10.1080/15226514.2021.2023461
  50. Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., & Ding, A. (2018). Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences (China), 63, 156–173. https://doi.org/10.1016/j.jes.2017.08.004
  51. Xun, Y., Feng, L., Li, Y., & Dong, H. (2017). Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 189, 161–170. https://doi.org/10.1016/j.chemosphere.2017.09.055
  52. Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250(November 2018). https://doi.org/10.1016/j.jenvman.2019.109557