Vol. 13 No. 4 (2024): Revista de Investigaciones
Artí­culos Originales

Physical vs. virtualized infrastructure: experimental analysis of CPU usage at the National University of Altiplano

Jesus Daniel Malma Montaño
Universidad Nacional del Altiplano
Adolfo Carlos Jimenez Chura
Universidad Nacional del Altiplano
V13n4-Revista de Investigaciones

Published 2024-12-30

Keywords

  • Server automation,
  • Operational efficiency,
  • Virtualized infrastructure,
  • Resource optimization,
  • CPU and memory usage

How to Cite

Malma Montaño, J. D., & Jimenez Chura, A. C. (2024). Physical vs. virtualized infrastructure: experimental analysis of CPU usage at the National University of Altiplano. Revista De Investigaciones, 13(4), 201-209. https://doi.org/10.26788/ri.v13i4.6513

Abstract

Server automation enables the optimization of resource management and enhances operational efficiency in technological environments. The infrastructure can be either physical or virtualized, each presenting advantages and disadvantages in terms of performance and resource consumption. The aim of this research was to evaluate and compare the operational efficiency in CPU usage between physical and virtualized servers at the Universidad Nacional del Altiplano. The methodology followed a quantitative and experimental approach, using a sample of six servers (three physical and three virtual), monitored with Prometheus and Grafana. The results showed significant differences: virtualized servers demonstrated more efficient CPU usage (average of 3.66%) compared to physical servers (43.85%). Statistical tests, such as the Student’s t-test, were applied and yielded a t-value of 28.21 and a p-value of 2.57e-150, indicating a highly significant difference between the two types of servers. It is concluded that virtualization provides advantages in resource optimization and operational stability, especially for lower-demand applications, suggesting that its implementation in academic environments could enhance the efficiency of university technological infrastructure.

References

  1. Al-Mamun, A., Rahman, M. M., & Roy, N. (2021). Enhancing disaster recovery in cloud computing using container-based virtualization. Journal of Cloud Computing, 10(1), 15. https://doi.org/10.1186/s13677-021-00227-5
  2. Ariyanto, Y. (2023). SINGLE SERVER-SIDE AND MULTIPLE VIRTUAL SERVER-SIDE ARCHITECTURES: PERFORMANCE ANALYSIS ON PROXMOX VE FOR E-LEARNING SYSTEMS. Journal of Engineering and Technology for Industrial Applications, 9(44), 25–34. https://doi.org/10.5935/jetia.v9i44.903
  3. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generation Computer Systems, 28(5), 755–768. https://doi.org/10.1016/j.future.2011.04.017
  4. Bianchini, R., & Rajamony, R. (2019). Power and energy management for server systems. Computer, 37(11), 68–74. https://doi.org/10.1109/MC.2015.378
  5. Brooks, T. T., Caicedo, C., & Park, J. S. (2012). Security Vulnerability Analysis in Virtualized Computing Environments. https://infonomics-society.org/wp-content/uploads/ijicr/published-papers/volume-3-2012/Security-Vulnerability-Analysis-in-Virtualized-Computing-Environments.pdf
  6. Castillo, P. A., Chávez, J., Para Obtener El, Á., Profesional, T., Oliver, I., & Araujo, V. (2021). “VIRTUALIZACIÓN DE SERVIDORES CON VMWARE VSPHERE 6.5 PARA OPTIMIZAR LOS PROCESOS DEL SERVICIO DE AUTOMATIZACIÓN EN LA EMPRESA TIC INTEGRITY G&V SAC.”
  7. Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195–1204. https://doi.org/10.1016/j.procs.2017.05.065
  8. Djordjevic, B., Timcenko, V., Kraljevic, N., & Macek, N. (2021). File System Performance Comparison in Full Hardware Virtualization with ESXi, KVM, Hyper-V and Xen Hypervisors. Advances in Electrical and Computer Engineering, 21(1), 11–20. https://doi.org/10.4316/AECE.2021.01002
  9. Espinosa Tigre, R. M., Veloz Remache, G. del R., Ramos Valencia, M. V., & Guaiña, J. (2022). Análisis de hypervisores nativo propietario vs libre como alternativa para el almacenamiento de datos. Revista Científica de FAREM-Estelí, 42, 144–158. https://doi.org/10.5377/farem.v11i42.14695
  10. Hamdi, H., Amri, S., & Brahmi, Z. (2019). Managing Performance Interference Effects for Intelligent and Efficient Virtual Machines Placement based on GWO Approach in Cloud. International Journal of Computing and Digital Systems, 8(4), 317–332. https://doi.org/10.12785/ijcds/080401
  11. Huber, N., Von Quast, M., Hauck, M., & Kounev, S. (2011). Evaluating and modeling virtualization performance overhead for cloud environments. CLOSER 2011–Proceedings of the 1st International Conference on Cloud Computing and Services Science, 563–573. https://doi.org/10.5220/0003388905630573
  12. Juiz, C., & Bermejo, B. (2024). On the scalability of the speedup considering the overhead of consolidating virtual machines in servers for data centers. Journal of Supercomputing, 80(9), 12463–12511. https://doi.org/10.1007/s11227-024-05943-y
  13. Khaji, F. A., Potluri, S. V., & Kakelli, A. K. (2021). A performance analysis of virtual mail server on type-2 hypervisors. Walailak Journal of Science and Technology, 18(13). https://doi.org/10.48048/wjst.2021.9845
  14. Kolahi, S. S., Hora, V. S., Singh, A. P., Bhatti, S., & Yeeda, S. R. (2020, February 1). Performance comparison of cloud computing/IoT virtualization software, hyper-v vs vsphere. 2020 Advances in Science and Engineering Technology International Conferences, ASET 2020. https://doi.org/10.1109/ASET48392.2020.9118185
  15. Kommeri, J., Niemi, T., & Helin, O. (2020). Energy Efficiency of Server Virtualization. http://www.roylongbottom.org.uk
  16. Korniichuk, M., Karpov, K., Fedotova, I., Kirova, V., Mareev, N., Syzov, D., & Siemens, E. (2018). Impact of Xen and Virtual Box Virtualization Environments on Timing Precision under Stressful Conditions. MATEC Web of Conferences, 208. https://doi.org/10.1051/matecconf/201820802006
  17. Lakhno, V., Alimseitova, Z., Kalaman, Y., Kryvoruchko, O., Desiatko, A., & Kaminskyi, S. (2023). Development of an Information Security System Based on Modeling Distributed Computer Network Vulnerability Indicators of an Informatization Object. International Journal of Electronics and Telecommunications, 69(3), 475–483. https://doi.org/10.24425/ijet.2023.146495
  18. Leite, R., Solis, P., & Alchieri, E. (2019a). Performance analysis of an hyperconverged infrastructure using docker containers and GlusterFS. CLOSER 2019–Proceedings of the 9th International Conference on Cloud Computing and Services Science, 339–346. https://doi.org/10.5220/0007718003390346
  19. Leite, R., Solis, P., & Alchieri, E. (2019b). Performance analysis of an hyperconverged infrastructure using docker containers and GlusterFS. CLOSER 2019–Proceedings of the 9th International Conference on Cloud Computing and Services Science, 339–346. https://doi.org/10.5220/0007718003390346
  20. Livise Aguilar, R. E. (2022). Implementación de una plataforma de virtualización aplicando la metodología OPV para el proceso de gestión de laboratorios académicos en SENATI–contexto COVID-19. https://hdl.handle.net/20.500.13084/6098
  21. Manandhar, R., & Sharma, G. (2021). Virtualization in Distributed System: A Brief Overview. BOHR International Journal of Intelligent Instrumentation and Computing, 1(1), 34–38. https://doi.org/10.54646/BIJIIAC.006
  22. Mochalov, V., Linets, G., & Palkanov, I. (2021). Server Infrastructure Virtualization for Data Centers. IOP Conference Series: Earth and Environmental Science, 678(1). https://doi.org/10.1088/1755-1315/678/1/012014
  23. Perumal, K., Mohan, S., Frnda, J., & Divakarachari, P. B. (2022). Dynamic resource provisioning and secured file sharing using virtualization in cloud azure. Journal of Cloud Computing, 11(1). https://doi.org/10.1186/s13677-022-00326-1
  24. Petrov, A. A., Nikiforov, I. V., & Ustinov, S. M. (2022). Algorithm of ESXi cluster migration between different vCenter servers with the ability to rollback. Informatsionno-Upravliaiushchie Sistemy, 2, 20–31. https://doi.org/10.31799/1684-8853-2022-2-20-31
  25. Sharma, P., Chaufournier, L., Shenoy, P., & Tay, Y. C. (2016, November 28). Containers and virtual machines at scale: A comparative study. Proceedings of the 17th International Middleware Conference, Middleware 2016. https://doi.org/10.1145/2988336.2988337
  26. Uddin, M., Hamdi, M., Alghamdi, A., Alrizq, M., Memon, M. S., Abdelhaq, M., & Alsaqour, R. (2021). Server consolidation: A technique to enhance cloud data center power efficiency and overall cost of ownership. International Journal of Distributed Sensor Networks, 17(3). https://doi.org/10.1177/1550147721997218
  27. Uddin, M., Shah, A., Abubakar, A., & Adeleke, I. (2021). Journal of Power Technologies 94 (2) (2014) 1-10 Implementation of Server virtualization to Build Energy Efficient Data Centers.
  28. Yactayo Sanchez, A. D., Cano Lengua, M. A., & Andrade-Arenas, L. (2023). Server Virtualization: Success Story in a Peruvian Company. International Journal of Engineering Trends and Technology, 71(1), 293–304. https://doi.org/10.14445/22315381/IJETT-V71I1P226
  29. Yaqub, N. (2012). Comparison of Virtualization Performance: VMWare and KVM.