Vol. 13 No. 1 (2024): Revista de Investigaciones
Artí­culos Originales

Estimation of global solar irradiation in the city of Puno period 2022 and 2023

Matias Huillca Arbieto
Escuela profesional de Ciencias Físico Matemática, Universidad Nacional del Altiplano, Puno, Perú
Juan Carlos Vilca Tisnado
Escuela profesional de Ciencias Físico Matemática, Universidad Nacional del Altiplano, Puno, Perú
Percy Arturo Ginez Choque
Facultad de Ingeniería Agrícola, Universidad Nacional del Altiplano, Puno, Perú
Edilberto Velarde Coaquira
Facultad de Ingeniería Agrícola, Universidad Nacional del Altiplano, Puno, Perú
Tapa Revista de Investigaciones

Published 2024-03-31

Keywords

  • irradiancia global,
  • índice ultravioleta,
  • albedo,
  • aerosol

How to Cite

Huillca Arbieto, Matias, Juan Carlos Vilca Tisnado, Percy Arturo Ginez Choque, and Edilberto Velarde Coaquira. 2024. “Estimation of Global Solar Irradiation in the City of Puno Period 2022 and 2023”. Revista De Investigaciones 13 (1): 48-56. https://doi.org/10.26788/ri.v13i1.6038.

Abstract

The estimation of global solar irradiation, among many applications, is used to identify possible locations as photovoltaic renewable energy sources. It is also used to estimate the ultraviolet solar irradiation index (UVI). Due to its geographical location, the Puno region presents very high values of global solar irradiation. The objective of this work is to estimate global irradiance from the SBDART model for cloudless skies, and compare it with the measurements obtained from the meteorological station located in the city of Puno. In the methodology, 183 days, 2013 data of cloudless skies were classified, the MBE, MABE, RMSE statistics and the correlation coefficient were used. The estimation with the model shows that there is an inverse relationship with the aerosols present, while the relationship is direct with the albedo of the place. The correlation between the model and the measurements is 0.99 and 0.99 for the years 2022 and 2023 respectively. The statistical indicators used classify the model as very good. On the other hand, the SBDART model also allows estimating the IUV values. It is observed that, in the summer season, the IUV registers values of 19 and that they increase until the end of February during the study period; these high values are extremely dangerous according to the WHO. The clinical cases of the Ministry of Health, Puno region, report skin cancer, from the years 2020, 2021, 2022 and 2023 with 7, 21, 39 and 60 cases respectively. While ocular cases, such as cataracts, in the years 2020, 2021 and 2022 were 825, 1194 and 1915 respectively. This increase is mainly attributed to ultraviolet irradiation, other factors, demographics, diet, and hereditary factors are not ruled out.

References

  1. Allen. 2008. “Photocatalytic Titania Based Surfaces: Environmental Benefits.” Polymer Degradation and Stability 93 (9): 1632–46. https://doi.org/10.1016/j.polymdegradstab.2008.04.015.
  2. Badarinath. 2008. “Influence of Natural and Anthropogenic Activities on UV Index Variations - A Study over Tropical Urban Region Using Ground Based Observations and Satellite Data.” Journal of Atmospheric Chemistry 59 (3): 219–36. https://doi.org/10.1007/s10874-008-9103-4.
  3. Bilbao, J., and A. Miguel. 2013. “Contribution to the Study of UV-B Solar Radiation in Central Spain.” Renewable Energy 53 (March 2010): 79–85. https://doi.org/10.1016/j.renene.2012.10.055.
  4. Cañada, J. 2008. “Study of Erythemal, UV (A+B) and Glob.” International Journal of Climatology 2029 (March 2008): 2011–29. https://doi.org/10.1002/joc.1569.
  5. Carrión-Chamba. 2022. “A Review of the State-of-the-Art of Solar Thermal Collectors Applied in the Industry.” Ingenius 2022 (27): 59–73. https://doi.org/10.17163/ings.n27.2022.06.
  6. Dedios Mimbela, Ninell Janett. 2016. “Radiación Ultravioleta. Análisis de Su Comportamiento Estacional En Diferentes Sectores de La Región Piura. Costa Norte Del Perú.” Ingenierías USBMed 7 (1): 26–30. https://doi.org/10.21500/20275846.2020.
  7. Fioletov. 2009. “On the Relationship between Erythemal and Vitamin D Action Spectrum Weighted Ultraviolet Radiation.” Journal of Photochemistry and Photobiology B: Biology 95 (1): 9–16. https://doi.org/10.1016/j.jphotobiol.2008.11.014.
  8. Foyo. 1998. “Ground Based Ultraviolet (290-385 Nm) and Broadband Solar Radiation Measurements in South-Eastern Spain.” International Journal of Climatology 18 (12): 1389–1400. https://doi.org/10.1002/(SICI)1097-0088(1998100)18:12<1389::AID-JOC318>3.0.CO;2-N.
  9. Gallagher. 2006. “Adverse Effects of Ultraviolet Radiation: A Brief Review.” Progress in Biophysics and Molecular Biology 92 (1): 119–31. https://doi.org/10.1016/j.pbiomolbio.2006.02.011.
  10. Huaman, Ciro William Taipe, Eva Genoveva Mendoza Mamani, Julio Rumualdo Gallegos Ramos, Hugo Hernan Flores Laime, Vitaliano Enriquez Mamani, Jhon Richard Huanca Suaquita, and Matias Huillca Arbieto. 2023. “App to Estimate the Ultraviolet Index in Real Time in the Region of Puno, Peru.” In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. Vol. 2023-July. Latin American and Caribbean Consortium of Engineering Institutions. https://doi.org/10.18687/laccei2023.1.1.665.
  11. Huillca M. 2023. “Estimacíon Del Índice de Irradiacíon Solar Ultravioleta En La Ciudad de Puno.” Perú: Universidad Nacional del Altiplano. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://repositorio.unap.edu.pe/bitstream/handle/20.500.14082/20770/Huillca_Arbieto_Matias.pdf?sequence=1&isAllowed=y.
  12. Iqbal. 1983. An Introduction to Solar Radiation. 1era ed. Canada: Academic Press. https://books.google.com.pe/books?hl=es&lr=&id=3_qWce_mbPsC&oi=fnd&pg=PP1&dq=Iqbal+M.,+1983.+An+Introduction+to+Solar+Radiation.+Toronto+Canada,+Academic+Press.&ots=h6w0ViK7Rr&sig=8ME_c8sXujO9oqwJCjMGkOO5DZc#v=onepage&q&f=false.
  13. Jacquet. 2003. “Effects of Ultraviolet Radiation on Marine Virus-Phytoplankton Interactions.” FEMS Microbiology Ecology 44 (3): 279–89. https://doi.org/10.1016/S0168-6496(03)00075-8.
  14. Johnson. 1996. “Analysis of Test Methods for UV Durability Predictions of Polymer Coatings.” Progress in Organic Coatings 27 (1–4): 95–106. https://doi.org/10.1016/0300-9440(94)00525-7.
  15. Kunz. 2006. “Plant Responses to UV Radiation and Links to Pathogen Resistance.” International Review of Cytology 255 (06): 1–40. https://doi.org/10.1016/S0074-7696(06)55001-6.
  16. Li. 2010. “A Meta-Analysis of the Responses of Woody and Herbaceous Plants to Elevated Ultraviolet-B Radiation.” Acta Oecologica 36 (1): 1–9. https://doi.org/10.1016/j.actao.2009.09.002.
  17. Lindfors. 2007. “A Method for Reconstruction of Past UV Radiation Based on Radiative Transfer Modeling: Applied to Four Stations in Northern Europe.” Journal of Geophysical Research Atmospheres 112 (23): 1–15. https://doi.org/10.1029/2007JD008454.
  18. Liu. 2002. “Effect of Carbon Black on UV Stability of LLDPE Films under Artificial Weathering Conditions.” Polymer Degradation and Stability 75 (3): 485–99. https://doi.org/10.1016/S0141-3910(01)00252-X.
  19. Mao. 2013. “General Models for Estimating Daily Global Solar Radiation for Different Solar Radiation Zones in Mainland China.” Energy Conversion and Management 70: 139–48. https://doi.org/10.1016/j.enconman.2013.03.004.
  20. Martinez. 1996. “Measurement and Analysis of Ultraviolet Solar.” International Journal 16: 947–55. https://doi.org/https://doi.org/10.1002/(SICI)1097-0088(199608)16:8<947::AID-JOC55>3.0.CO;2-O.
  21. Miguel. 2011. “Measurements and Attenuation of Erythemal Radiation in Central Spain.” International Journal of Climatology 32 (6): 929–40. https://doi.org/10.1002/joc.2319.
  22. Pahkala. 2003. “Effects of Ultraviolet-B Radiation on Behaviour and Growth of Three Species of Amphibian Larvae.” Chemosphere 51 (3): 197–204. https://doi.org/10.1016/S0045-6535(02)00813-5.
  23. Paoletti. 2005. “UV-B and Mediterranean Forest Species: Direct Effects and Ecological Consequences.” Environmental Pollution 137 (3): 372–79. https://doi.org/10.1016/j.envpol.2005.01.028.
  24. Paul ., Ricchiazzi. 1988. “SB DART : A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the ^ Earth ’ s Atmosphere.” American Metereological Society 79: 2101–14. https://doi.org/https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.
  25. Pribullová. 2008. “Typical Distribution of the Solar Erythemal UV Radiation over Slovakia.” Atmospheric Chemistry and Physics 8 (17): 5393–5401. https://doi.org/10.5194/acp-8-5393-2008.
  26. Quispe, L., and G Sotomayor. 2022. “Determinación y Análisis Temporal de La Radiación Solar En El Altiplano de Puno.” Revista Chilena de Ingeniería, 30: 69–81. https://doi.org/http://dx.doi.org/10.4067/S0718-33052022000100069.
  27. Rozema, J., L. O. Björn, J. F. Bornman, A. Gaberščik, D. P. Häder, T. Trošt, M. Germ, et al. 2002. “The Role of UV-B Radiation in Aquatic and Terrestrial Ecosystems-An Experimental and Functional Analysis of the Evolution of UV-Absorbing Compounds.” Journal of Photochemistry and Photobiology B: Biology 66 (1): 2–12. https://doi.org/10.1016/S1011-1344(01)00269-X.
  28. Santos, Julia. 2011. “Analysis and Cloudiness Influence on UV Total Irradiation.” International Journal of Climatology 31 (3): 451–60. https://doi.org/10.1002/joc.2072.
  29. Serrano. 2006. “Daily and Annual Variations of Erythemal Ultraviolet Radiation in Southwestern Spain.” Annales Geophysicae 24 (2): 427–41. https://doi.org/10.5194/angeo-24-427-2006.
  30. Sinha. 2002. “Life under Solar UV Radiation in Aquatic Organisms.” Advances in Space Research 30 (6): 1547–56. https://doi.org/10.1016/S0273-1177(02)00370-8.
  31. Sweet. 2012. “Evidence of Melanoma in Wild Marine Fish Populations.” PLoS ONE 7 (8). https://doi.org/10.1371/journal.pone.0041989.
  32. Varo. 2006. “Modelización de La Radiación Ultravioleta Solar.” http://dialnet.unirioja.es/servlet/tesis?codigo=19022.
  33. Verbeek. 2011. “Degradation as a Result of UV Radiation of Bloodmeal-Based Thermoplastics.” Polymer Degradation and Stability 96 (4): 515–22. https://doi.org/10.1016/j.polymdegradstab.2011.01.003.
  34. Wang. 2014. “UV Variability in an Arid Region of Northwest China from Measurements and Reconstructions.” International Journal of Climatology 35 (8): 1938–47. https://doi.org/10.1002/joc.4099.
  35. WHO. 2003. “Indice UV Solar Mundial.” https://www.who.int/es/publications/i/item/9241590076.
  36. Yanfeng. 2017. “Classification of Solar Radiation Zones and General Models for Estimating the Daily Global Solar Radiation on Horizontal Surfaces in China.” Energy Conversion and Management 154 (September): 168–79. https://doi.org/10.1016/j.enconman.2017.10.043