Estimation of global solar irradiation in the city of Puno period 2022 and 2023
Published 2024-03-31
Keywords
- irradiancia global,
- índice ultravioleta,
- albedo,
- aerosol
Copyright (c) 2024 Matias Huillca Arbieto, Juan Carlos Vilca Tisnado, Percy Arturo Ginez Choque , Edilberto Velarde Coaquira
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
The estimation of global solar irradiation, among many applications, is used to identify possible locations as photovoltaic renewable energy sources. It is also used to estimate the ultraviolet solar irradiation index (UVI). Due to its geographical location, the Puno region presents very high values of global solar irradiation. The objective of this work is to estimate global irradiance from the SBDART model for cloudless skies, and compare it with the measurements obtained from the meteorological station located in the city of Puno. In the methodology, 183 days, 2013 data of cloudless skies were classified, the MBE, MABE, RMSE statistics and the correlation coefficient were used. The estimation with the model shows that there is an inverse relationship with the aerosols present, while the relationship is direct with the albedo of the place. The correlation between the model and the measurements is 0.99 and 0.99 for the years 2022 and 2023 respectively. The statistical indicators used classify the model as very good. On the other hand, the SBDART model also allows estimating the IUV values. It is observed that, in the summer season, the IUV registers values of 19 and that they increase until the end of February during the study period; these high values are extremely dangerous according to the WHO. The clinical cases of the Ministry of Health, Puno region, report skin cancer, from the years 2020, 2021, 2022 and 2023 with 7, 21, 39 and 60 cases respectively. While ocular cases, such as cataracts, in the years 2020, 2021 and 2022 were 825, 1194 and 1915 respectively. This increase is mainly attributed to ultraviolet irradiation, other factors, demographics, diet, and hereditary factors are not ruled out.
References
- Allen, T. (2008). Photocatalytic Titania Based Surfaces: Environmental Benefits. Polymer Degradation and Stability, 93(9), 1632-1646. https://doi.org/10.1016/j.polymdegradstab.2008.04.015
- Badarinath, K. V. S. (2008). Influence of Natural and Anthropogenic Activities on UV Index Variations–A Study over Tropical Urban Region Using Ground Based Observations and Satellite Data. Journal of Atmospheric Chemistry, 59(3), 219-236. https://doi.org/10.1007/s10874-008-9103-4
- Bilbao, J., & Miguel, A. (2013). Contribution to the Study of UV-B Solar Radiation in Central Spain. Renewable Energy, 53, 79-85. https://doi.org/10.1016/j.renene.2012.10.055
- Cañada, J. (2008). Study of Erythemal, UV (A+B) and Glob. International Journal of Climatology, 2029, 2011-2029. https://doi.org/10.1002/joc.1569
- Carrión-Chamba, J. (2022). A Review of the State-of-the-Art of Solar Thermal Collectors Applied in the Industry. Ingenius, 2022(27), 59-73. https://doi.org/10.17163/ings.n27.2022.06
- De Miguel, A., Bilbao, J., Román, R., & Mateos, D. (2012). Measurements and attenuation of erythemal radiation in Central Spain. International Journal of Climatology, 32, 929-940. https://doi.org/10.1002/joc.2319
- Dedios Mimbela, N. J. (2016). Radiación Ultravioleta. Análisis de Su Comportamiento Estacional En Diferentes Sectores de La Región Piura. Costa Norte Del Perú. Ingenierías USBMed, 7(1), 26-30. https://doi.org/10.21500/20275846.2020
- Fioletov, V. (2009). On the Relationship between Erythemal and Vitamin D Action Spectrum Weighted Ultraviolet Radiation. Journal of Photochemistry and Photobiology B: Biology, 95(1), 9-16. https://doi.org/10.1016/j.jphotobiol.2008.11.014
- Foyo, I. (1998). Ground Based Ultraviolet (290-385 Nm) and Broadband Solar Radiation Measurements in South-Eastern Spain. International Journal of Climatology, 18(12), 1389-1400. https://doi.org/10.1002/(SICI)1097-0088(1998100)18:12<1389::AID-JOC318>3.0.CO;2-N
- Gallagher, J. (2006). Adverse Effects of Ultraviolet Radiation: A Brief Review. Progress in Biophysics and Molecular Biology, 92(1), 119-131. https://doi.org/10.1016/j.pbiomolbio.2006.02.011
- Huaman, C. W. T., Mendoza Mamani, E. G., Gallegos Ramos, J. R., Flores Laime, H. H., Mamani, V. E., Huanca Suaquita, J. R., & Huillca Arbieto, M. (2023). App to Estimate the Ultraviolet Index in Real Time in the Region of Puno, Peru. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2023-July. https://doi.org/10.18687/laccei2023.1.1.665
- Huillca Arbieto, M. (2023). Estimación Del Índice de Irradiación Solar Ultravioleta En La Ciudad de Puno [Tesis de Maestría, Universidad Nacional del Altiplano]. http://repositorio.unap.edu.pe/bitstream/handle/20.500.14082/20770/Huillca_Arbieto_Matias.pdf?sequence=1&isAllowed=y
- Jacquet, S. (2003). Effects of Ultraviolet Radiation on Marine Virus-Phytoplankton Interactions. FEMS Microbiology Ecology, 44(3), 279-289. https://doi.org/10.1016/S0168-6496(03)00075-8
- Johnson, C. (1996). Analysis of Test Methods for UV Durability Predictions of Polymer Coatings. Progress in Organic Coatings, 27(1–4), 95-106. https://doi.org/10.1016/0300-9440(94)00525-7
- Kunz, P. (2006). Plant Responses to UV Radiation and Links to Pathogen Resistance. International Review of Cytology, 255, 1-40. https://doi.org/10.1016/S0074-7696(06)55001-6
- Li, J. (2010). A Meta-Analysis of the Responses of Woody and Herbaceous Plants to Elevated Ultraviolet-B Radiation. Acta Oecologica, 36(1), 1-9. https://doi.org/10.1016/j.actao.2009.09.002
- Liu, Z. (2002). Effect of Carbon Black on UV Stability of LLDPE Films under Artificial Weathering Conditions. Polymer Degradation and Stability, 75(3), 485-499. https://doi.org/10.1016/S0141-3910(01)00252-X
- Mao, X. (2013). General Models for Estimating Daily Global Solar Radiation for Different Solar Radiation Zones in Mainland China. Energy Conversion and Management, 70, 139-148. https://doi.org/10.1016/j.enconman.2013.03.004
- Martinez, A. (1996). Measurement and Analysis of Ultraviolet Solar. International Journal, 16, 947-955. https://doi.org/10.1002/(SICI)1097-0088(199608)16:8<947::AID-JOC55>3.0.CO;2-O
- Pahkala, K. (2003). Effects of Ultraviolet-B Radiation on Behaviour and Growth of Three Species of Amphibian Larvae. Chemosphere, 51(3), 197-204. https://doi.org/10.1016/S0045-6535(02)00813-5
- Paoletti, E. (2005). UV-B and Mediterranean Forest Species: Direct Effects and Ecological Consequences. Environmental Pollution, 137(3), 372-379. https://doi.org/10.1016/j.envpol.2005.01.028
- Paul, D., & Ricchiazzi, P. (1988). SB DART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. American Meteorological Society, 79, 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
- Pribullová, L. (2008). Typical Distribution of the Solar Erythemal UV Radiation over Slovakia. Atmospheric Chemistry and Physics, 8(17), 5393-5401. https://doi.org/10.5194/acp-8-5393-2008
- Quispe, L., & Sotomayor, G. (2022). Determinación y Análisis Temporal de La Radiación Solar En El Altiplano de Puno. Revista Chilena de Ingeniería, 30, 69-81. https://doi.org/10.4067/S0718-33052022000100069
- Rozema, J., Björn, L. O., Bornman, J. F., Gaberščik, A., Häder, D. P., Trošt, T., & Germ, M. et al. (2002). The Role of UV-B Radiation in Aquatic and Terrestrial Ecosystems-An Experimental and Functional Analysis of the Evolution of UV-Absorbing Compounds. Journal of Photochemistry and Photobiology B: Biology, 66(1), 2-12. https://doi.org/10.1016/S1011-1344(01)00269-X
- Santos, J. (2011). Analysis and Cloudiness Influence on UV Total Irradiation. International Journal of Climatology, 31(3), 451-460. https://doi.org/10.1002/joc.2072
- Serrano, A. (2006). Daily and Annual Variations of Erythemal Ultraviolet Radiation in Southwestern Spain. Annales Geophysicae, 24(2), 427-441. https://doi.org/10.5194/angeo-24-427-2006
- Sinha, R. (2002). Life under Solar UV Radiation in Aquatic Organisms. Advances in Space Research, 30(6), 1547-1556. https://doi.org/10.1016/S0273-1177(02)00370-8
- Sweet, M. (2012). Evidence of Melanoma in Wild Marine Fish Populations. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0041989
- Varo Martínez, M. M. (2006). Modelización de La Radiación Ultravioleta Solar [Doctoral, Universidad de Córdoba]. https://helvia.uco.es/xmlui/bitstream/handle/10396/283/13918643.pdf
- Verbeek, P. (2011). Degradation as a Result of UV Radiation of Bloodmeal-Based Thermoplastics. Polymer Degradation and Stability, 96(4), 515-522. https://doi.org/10.1016/j.polymdegradstab.2011.01.003
- Wang, Y. (2014). UV Variability in an Arid Region of Northwest China from Measurements and Reconstructions. International Journal of Climatology, 35(8), 1938-1947. https://doi.org/10.1002/joc.4099
- Yanfeng, S. (2017). Classification of Solar Radiation Zones and General Models for Estimating the Daily Global Solar Radiation on Horizontal Surfaces in China. Energy Conversion and Management, 154, 168-179. https://doi.org/10.1016/j.enconman.2017.10.043