Vol. 13 No. 3 (2024): Revista de Investigaciones
Artí­culos Originales

Assessment of the energy potential and efficiency for energy generation through methane production

Jose Antonio Vargas Maron
Universidad Nacional del Altiplano

Published 2024-09-27

Keywords

  • Biodigestion,
  • city,
  • electricity,
  • methane,
  • energy potential

How to Cite

Vargas Maron, J. A. (2024). Assessment of the energy potential and efficiency for energy generation through methane production. Revista De Investigaciones, 13(3), 128-138. https://doi.org/10.26788/ri.v13i3.5837

Abstract

This research work aimed to evaluate the relationship between methane production by biodigestion of organic solid waste, its energy potential and efficiency to generate electricity in the city of Puno. The specific objectives included the characterisation of organic waste and the evaluation of the energy potential of methane. The main focus was on anaerobic biodigestion, a process that decomposes organic matter in the absence of oxygen, generating methane as a by-product. The focus was on food waste, fruit and vegetable peelings and leftover fruit and vegetables as the main biomass components, collected from the city’s markets. A descriptive quantitative research approach was used to collect specific data on methane production, energy potential and efficiency in electricity generation. As for the results, the yield of the biodigestion process is 41.5709 %, which allows producing a volume of 734.6382 cubic metres of methane. The calculated energy potential of the methane produced is 5142.6802 kWh (18513.65 Mega Joules), underlining the feasibility of using organic waste for energy generation. The estimated electrical power is 303.7 KW, which confirms the efficiency of the process, especially considering the specific composition of the biomass. This study provides valuable insights for the development of sustainable waste management and energy generation strategies in the city of Puno, highlighting anaerobic biodigestion as a promising and environmentally beneficial solution.

References

  1. Adetunji, Adegoke Isiaka, Paul Johan Oberholster, & Mariana Erasmus. 2023. “From Garbage to Treasure: A Review on Biorefinery of Organic Solid Wastes into Valuable Biobased Products.” Bioresource Technology Reports 24 (August): 101610. https://doi.org/10.1016/j.biteb.2023.101610.
  2. Agonafer, Tamerat Demeke, Wondwossen Bogale Eremed, & Kamil Dino Adem. 2022. “Biogas-Based Trigeneration System: A Review.” Results in Engineering 15 (July): 100509. https://doi.org/10.1016/j.rineng.2022.100509.
  3. Ajay, C. M., Sooraj Mohan, & P. Dinesha. 2021. “Decentralized Energy from Portable Biogas Digesters Using Domestic Kitchen Waste: A Review.” Waste Management 125: 10–26. https://doi.org/10.1016/j.wasman.2021.02.031.
  4. Almatrafi, Eydhah, Abdul Khaliq, & Abdullah Abuhabaya. 2022. “Thermodynamic and Exergetic Assessment of a Biomass Derived Syngas Fueled Gas Turbine Powered Trigeneration System.” Case Studies in Thermal Engineering 35 (March): 102099. https://doi.org/10.1016/j.csite.2022.102099.
  5. Avaci, Angelica Buzinaro, Samuel Nelson Melegari De Souza, Ivan Werncke, & Luiz Inácio Chaves. 2013. “Financial Economic Scenario for the Microgeneration of Electric Energy from Swine Culture-Originated Biogas.” Renewable and Sustainable Energy Reviews 25: 272–76. https://doi.org/10.1016/j.rser.2013.04.005.
  6. Bahrun, Mohd Hardyianto Vai, Awang Bono, Norasikin Othman, & Muhammad Abbas Ahmad Zaini. 2022. “Carbon Dioxide Removal from Biogas through Pressure Swing Adsorption – A Review.” Chemical Engineering Research and Design 183: 285–306. https://doi.org/10.1016/j.cherd.2022.05.012.
  7. Caetano, Bryan Castro, Nathália Duarte Souza Alvarenga Santos, Vitor Mourão Hanriot, Oscar R. Sandoval, & Rudolf Huebner. 2022. “Energy Conversion of Biogas from Livestock Manure to Electricity Energy Using a Stirling Engine.” Energy Conversion and Management: X 15 (April). https://doi.org/10.1016/j.ecmx.2022.100224.
  8. Cherry, Calvin A., Michael Rios, Aleia McCord, Sarah Stefanos, & Giri Venkataramanan. 2014. “Portable Electrification Using Biogas Systems.” Procedia Engineering 78: 317–26. https://doi.org/10.1016/j.proeng.2014.07.073.
  9. Emmanuel, Jovine K., Philimon D. Nganyira, & Godlisten N. Shao. 2022. “Evaluating the Potential Applications of Brewers’ Spent Grain in Biogas Generation, Food and Biotechnology Industry: A Review.” Heliyon 8 (10): e11140. https://doi.org/10.1016/j.heliyon.2022.e11140.
  10. Ferraresi de Araujo, Geraldo Jose, & Sonia Valle Walter Borges de Oliveira. 2023. “Economic, Energetic and Environmental Analysis of the Utilization of Swine Manure in Brazil: Opportunities and Challenges.” Energy Strategy Reviews 47 (February): 101089. https://doi.org/10.1016/j.esr.2023.101089.
  11. Ferreira, L. R.A., R. B. Otto, F. P. Silva, S. N.M. De Souza, S. S. De Souza, & O. H. Ando Junior. 2018. “Review of the Energy Potential of the Residual Biomass for the Distributed Generation in Brazil.” Renewable and Sustainable Energy Reviews 94 (June): 440–55. https://doi.org/10.1016/j.rser.2018.06.034.
  12. Freitas, F. F., S. S. De Souza, L. R.A. Ferreira, R. B. Otto, F. J. Alessio, S. N.M. De Souza, O. J. Venturini, & O. H. Ando Junior. 2019. “The Brazilian Market of Distributed Biogas Generation: Overview, Technological Development and Case Study.” Renewable and Sustainable Energy Reviews 101 (June 2018): 146–57. https://doi.org/10.1016/j.rser.2018.11.007.
  13. Glivin, Godwin, N. Kalaiselvan, V. Mariappan, M. Premalatha, P. C. Murugan, & Joseph Sekhar. 2021. “Conversion of Biowaste to Biogas: A Review of Current Status on Techno-Economic Challenges, Policies, Technologies and Mitigation to Environmental Impacts.” Fuel 302 (May): 121153. https://doi.org/10.1016/j.fuel.2021.121153.
  14. Hasan, M. M., M. G. Rasul, M. M.K. Khan, N. Ashwath, & M. I. Jahirul. 2021. “Energy Recovery from Municipal Solid Waste Using Pyrolysis Technology: A Review on Current Status and Developments.” Renewable and Sustainable Energy Reviews 145 (March): 111073. https://doi.org/10.1016/j.rser.2021.111073.
  15. Kaur, Aashishdeep, Ruchi Bharti, & Renu Sharma. 2021. “Municipal Solid Waste as a Source of Energy.” Materials Today: Proceedings 81 (2): 904–15. https://doi.org/10.1016/j.matpr.2021.04.286.
  16. Kumar, Atul, & S. R. Samadder. 2017. “A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste.” Waste Management 69: 407–22. https://doi.org/10.1016/j.wasman.2017.08.046.
  17. Lino, Fátima A.M., Kamal A.R. Ismail, & Juan A. Castañeda-Ayarza. 2023. “Municipal Solid Waste Treatment in Brazil: A Comprehensive Review.” Energy Nexus 11 (August). https://doi.org/10.1016/j.nexus.2023.100232.
  18. Oliveira, Augusto Cesar Laviola de, Natalia dos Santos Renato, Marcio Arêdes Martins, Isabela Miranda de Mendonça, Camile Arêdes Moraes, & Michael de Oliveira Resende. 2021. “Modeling for Estimating and Optimizing the Energy Potential of Animal Manure and Sewage in Small and Medium-Sized Farms.” Journal of Cleaner Production 319 (August). https://doi.org/10.1016/j.jclepro.2021.128562.
  19. Pinto, Jucimar Augusto, Regina Mambeli Barros, Ivan Felipe Silva dos Santos, Geraldo Lúcio Tiago Filho, Maria Cláudia de Oliveira Botan, Thayla Francisca Vilas Bôas, & Adriele Maria de Cássia Crispim. 2023. “Study of the Anaerobic Co-Digestion of Bovine and Swine Manure: Technical and Economic Feasibility Analysis.” Cleaner Waste Systems 5 (May): 100097. https://doi.org/10.1016/j.clwas.2023.100097.
  20. Richards, D., & H. Yabar. 2023. “Promoting Energy and Resource Recovery from Livestock Waste: Case Study Yuge Farm, Japan.” Case Studies in Chemical and Environmental Engineering 7 (November 2022): 100299. https://doi.org/10.1016/j.cscee.2023.100299.
  21. Roozitalab, Atefeh, Fatemeh Hamidavi, & Ali Kargari. 2023. “A Review of Membrane Material for Biogas and Natural Gas Upgrading.” Gas Science and Engineering 114 (April): 204969. https://doi.org/10.1016/j.jgsce.2023.204969.
  22. Saadoun, Lamia, Alessio Campitelli, Jan Kannengiesser, Daniel Stanojkovski, Abdelhafid El Alaoui El Fels, Laila Mandi, & Naaila Ouazzani. 2022. “Acidogenic Digestion of Organic Municipal Solid Waste in a Pilot Scale Reactor: Effect of Waste Ratio and Leachate Recirculation and Dilution on Hydrolysis and Medium Chain Fatty Acid Production.” Bioresource Technology Reports 17 (November 2021): 100872. https://doi.org/10.1016/j.biteb.2021.100872.
  23. Shah, Anil V., Vijay Kumar Srivastava, Swayansu Sabyasachi Mohanty, & Sunita Varjani. 2021. “Municipal Solid Waste as a Sustainable Resource for Energy Production: State-of-the-Art Review.” Journal of Environmental Chemical Engineering 9 (4): 105717. https://doi.org/10.1016/j.jece.2021.105717.
  24. Traven, Luka. 2023. “Sustainable Energy Generation from Municipal Solid Waste: A Brief Overview of Existing Technologies.” Case Studies in Chemical and Environmental Engineering 8 (September): 100491. https://doi.org/10.1016/j.cscee.2023.100491.
  25. Varghese, Saju, Mekonnen M. Demeke, Roland Verhé, Emile Redant, Cedric Vander Cruyssen, & Johan M. Thevelein. 2023. “Process Optimization for Saccharification and Fermentation of the Organic Fraction of Municipal Solid Waste (OFMSW) to Maximize Ethanol Production Performance.” Bioresource Technology Reports 24 (June). https://doi.org/10.1016/j.biteb.2023.101681.
  26. Vilas Bôas, Thayla Francisca, Regina Mambeli Barros, Jucimar Augusto Pinto, Ivan Felipe Silva dos Santos, Electo Eduardo Silva Lora, Rubenildo Vieira Andrade, Geraldo Lúcio Tiago Filho, Karina Arruda Almeida, & Gabriel de Oliveira Machado. 2023. “Energy Potential from the Generation of Biogas from Anaerobic Digestion of Olive Oil Extraction Wastes in Brazil.” Cleaner Waste Systems 4 (February): 100083. https://doi.org/10.1016/j.clwas.2023.100083.
  27. Villarroel-Schneider, J., Lena Höglund-Isaksson, Brijesh Mainali, J. Martí-Herrero, Evelyn Cardozo, Anders Malmquist, & Andrew Martin. 2022. “Energy Self-Sufficiency and Greenhouse Gas Emission Reductions in Latin American Dairy Farms through Massive Implementation of Biogas-Based Solutions.” Energy Conversion and Management 261 (April). https://doi.org/10.1016/j.enconman.2022.115670.
  28. Villarroel-Schneider, J., Brijesh Mainali, J. Martí-Herrero, Anders Malmquist, Andrew Martin, & Lucio Alejo. 2020. “Biogas Based Polygeneration Plant Options Utilizing Dairy Farms Waste: A Bolivian Case.” Sustainable Energy Technologies and Assessments 37 (November 2019): 100571. https://doi.org/10.1016/j.seta.2019.100571.
  29. Walter Borges de Oliveira, Sonia Valle, Alexandre Bevilacqua Leoneti, Glauco Mateus Magrini Caldo, & Marcio Mattos Borges de Oliveira. 2011. “Generation of Bioenergy and Biofertilizer on a Sustainable Rural Property.” Biomass and Bioenergy 35 (7): 2608–18. https://doi.org/10.1016/j.biombioe.2011.02.048.
  30. Wang, Shule, Yuming Wen, Ziyi Shi, Ilman Nuran Zaini, Pär Göran Jönsson, & Weihong Yang. 2022. “Novel Carbon-Negative Methane Production via Integrating Anaerobic Digestion and Pyrolysis of Organic Fraction of Municipal Solid Waste.” Energy Conversion and Management 252 (November 2021). https://doi.org/10.1016/j.enconman.2021.115042.
  31. Yang, Ying, Sen Wang, Shoufu Wang, Qijiang Wang, Wei Xie, Lin Ye, Jinlin Tu, Xiaozhao Zhang, Guoqing Li, & Nianwen Xiang. 2022. “Lightning Trip-out Risk Assessment and Differential Lightning Protection of 35 KV Transmission Lines in Mountain Wind Farm.” Energy Reports 8: 581–88. https://doi.org/10.1016/j.egyr.2021.11.171.