Vol. 9 No. 3 (2020)
Artí­culos Originales

CAPACIDAD DE BIODEGRADACIÓN DE Pseudomonas aeruginosa FRENTE AL POLIETILENO DE BAJA DENSIDAD

Sandra Beatriz Butron Pinazo
Universidad Nacional del Altiplano
Bio

Published 2020-07-31 — Updated on 2020-08-11

Versions

Keywords

  • Bacteria,
  • biodegradación,
  • biopelícula,
  • cepa,
  • fluorescencia,
  • medio mineral,
  • polietileno
  • ...More
    Less

How to Cite

Butron Pinazo, S. B. (2020). CAPACIDAD DE BIODEGRADACIÓN DE Pseudomonas aeruginosa FRENTE AL POLIETILENO DE BAJA DENSIDAD. Revista De Investigaciones, 9(3), 1671-1684. https://doi.org/10.26788/riepg.v9i3.2027

Abstract

RESUMEN

La biodegradación del polietileno de baja densidad por microorganismos, es una alternativa de solución para reducir la contaminación por plásticos; la investigación tuvo como objetivo evaluar la capacidad de biodegradación de Pseudomonas aeruginosa frente al polietileno de baja densidad; la bacteria fue aislada de residuos plásticos obtenidos del botadero de Cancharani de la ciudad de Puno, la identificación taxonómica se realizó en base a características macroscópicas de crecimiento en placa y el estudio microscópico empleando la tinción de Gram; la adaptación de la bacteria se realizó en un medio mineral con partículas de polietileno; la capacidad biodegradativa se determinó a temperaturas de 25 y 35 °C con un pH de 5,0 y 7,0, durante 30 días, obteniendo como resultados un porcentaje de 21,7 % y 27,3 % de pérdida de peso a una temperatura de 25 °C y 35 °C respectivamente a un pH de 7,0. Además, se evidenció la viabilidad de la biopelícula con microscopio de fluorescencia.

Palabras Clave: Bacteria, biodegradación, biopelícula, cepa, fluorescencia, medio mineral, polietileno.

References

  1. REFERENCIAS
  2. Acuña N. R. 2017. Revisión Bibliográfica sobre los Microorganismos Biodegradadores de Polietileno de Baja Densidad LDPE y sus Efectos en el Material [Universidad Distrital Francisco José de Caldas, Bogotá]. http://repository.udistrital.edu.co/handle/11349/5608
  3. Anwar M., Negi H., Zaidi M., Haider G., Gupta S., Goel R. 2013. Biodeterioration studies of thermoplastics in nature using indigenous bacterial consortium. Brazilian Archives of Biology and Technology, 56(3), 475–484.https://doi.org/10.1590/S1516-89132013000300016
  4. Apiplast 2012. Situación de la industria plástica en el Perú.
  5. Begum N., Stephens, S., Schoeman O., Fraschke A., Kirsch B., Briere J.-B., Verheugt F. W. A., van Hout B. A. 2015. Cost-effectiveness Analysis of Rivaroxaban in the Secondary Prevention of Acute Coronary Syndromes in Sweden. Cardiology and Therapy, 4(2), 131–153. https://doi.org/10.1007/s40119-015-0041-3
  6. Bhatia R., Ortega L., Dash A. P., Mohamed A. J. 2014. Vector-borne diseases in South-East Asia: burdens and key challenges to be addressed. WHO South-East Asia Journal of Public Health, 3(1), 2–4. https://doi.org/10.4103/2224-3151.115828
  7. Cava F., de Pedro M. A., Lam H., Davis B. M., Waldor M. K. 2011. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. The EMBO Journal, 30(16), 3442–3453. https://doi.org/10.1038/emboj.2011.246
  8. Cava F., Hidalgo A., Berenguer J. 2009. Thermus thermophilus as biological model. Extremophiles : Life under Extreme Conditions, 13(2), 213–231. https://doi.org/10.1007/s00792-009-0226-6
  9. Chavant P., Martinie B., Meylheuc T., Bellon-Fontaine M.-N., Hebraud M. 2002. Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Applied and Environmental Microbiology, 68(2), 728–737. https://doi.org/10.1128/AEM.68.2.728-737.2002
  10. Cole M., Lindeque P., Fileman E., Halsband C., Goodhead R., Moger J., Galloway T. S. 2013. Microplastic ingestion by zooplankton. Environmental Science & Technology, 47(12), 6646–6655. https://doi.org/10.1021/es400663f
  11. Das R. K., rar S. K. 2013. Plant mediated green synthesis: modified approaches. Nanoscale, 5(21), 10155–10162. https://doi.org/10.1039/C3NR02548A
  12. Engler R. E. 2012. The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46(22), 12302–12315. https://doi.org/10.1021/es3027105
  13. Fontanella S., Bonhomme S., Brusson J. M., Pitteri S., Samuel G., Pichon G., Delort A. M. 2013. Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polymer Degradation and Stability, 98(4 SRC-BaiduScholar FG-0), 875–884. https://doi.org/10.1016/j.polymdegradstab.2013.01.002
  14. Gonzáles V. 2019. Capacidad biodegradativa de hongos filamentosos frente al polietileno. [Universidad Nacional del Altiplano]. http://repositorio.unap.edu.pe/handle/UNAP/12254
  15. Greenpeace 2019. Plásticos en los océanos. Datos, comparativas e impactos. In Dosier de prensa Espaa Disponible en greenpeaceorg. www.greenpeace.org
  16. Hadad D., Geresh S., Sivan A. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  17. Huerta E. 2018. El plástico y su impacto ambiental. In El comercio Lima1httpselcomerciopetecnologiacienciascontaminacionplasticoimpactosaludnoticia541460. www.elcomercio.com.pe
  18. Hussein A. A., Al-Mayaly I. K., Khudeir S. H. 2015. Isolation, Screening and Identification of Low Density Polyethylene (LDPE) degrading bacteria from contaminated soil with plastic wastes. Mesopotamia Environ J, 1(4 SRC-BaiduScholar FG-0), 1–14. https://www.iasj.net/iasj?func=article&aId=171203
  19. Ishigaki T., Sugano W., Ike M., Fujita M. 2000. Enzymatic degradation of cellulose acetate plastic by Novel degrading bacterium Bacillus sp. S2055. Journal of Bioscience and Bioengineering, 90(4), 400–405. https://doi.org/10.1016/S1389-1723(01)80008-6
  20. Ivleva N. P., Wiesheu A. C., Niessner R. 2017. Microplastic in Aquatic Ecosystems. Angewandte Chemie (International Ed. in English), 56(7), 1720–1739. https://doi.org/10.1002/anie.201606957
  21. Jailawi M. H. A., Ameen R. S., Saraf A. A. A. 2015. Polyethylene degradation by Pseudomonas putida S3A. Int J Adv Res Biol Sci, 2(1 SRC-BaiduScholar FG-0), 90–97. https://www.researchgate.net/publication/283459113_Polyethylene_degradation_by_Pseudomonas_putida_S3A
  22. Kannahi M., Sudha P. 2013. Screening of polythene and plastic degrading microbes from Muthupet mangrove soil. Pharm Res, 5(8), 122–127. www.jocpr.com
  23. Koneman E. W., Allen S. 2008. Koneman. Diagnostico Microbiologico/Microbiological diagnosis: Texto En Color/Text and Color Atlas. https://books.google.com.pe/books/about/Koneman_Diagnostico_Microbiologico_Micro.html?id=jyVQueKro88C
  24. Kumari K., Aanad R. C., Narula, N. 2009. Microbial degradation of polyethylene (PE). The South Pacific Journal of Natural and Applied Sciences. 27(1 SRC-BaiduScholar FG-0), 66–70. https://doi.org/10.1071/SP09012
  25. Kyaw B. M., Champakalakshmi R., Sakharkar M. K., Lim C. S., Sakharkar K. R. 2012. Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology, 52(3), 411–419. https://doi.org/10.1007/s12088-012-0250-6
  26. Lee B., Pometto A. L., Fratzke A., Bailey T. B. 1991. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. Applied and Environmental Microbiology, 57(3), 678–685. http://www.ncbi.n
  27. Méndez C. R., Vergaray G., Béjar V. R., Cárdenas K. J. 2007. Aislamiento y caracterización de micromicetos biodegradadores de polietileno. Revista Peruana de Biologia, 13(3 SRC-BaiduScholar FG-0), 203–206. http://www.scielo.org.pe/pdf/rpb/v13n3/v13n03a08.pdf
  28. Mumtaz T., ParvinNur H., Khan M. R., Bangladesh J. 2006. Susceptibility of low density polyethylene films to pond water microflora. Bot, 35(1 SRC-BaiduScholar FG-0), 31–37. https://www.researchgate.net/profile/Tabassum_Mumtaz/publication/255983611_Susceptibility_of_low_density_polyethylene_films_to_pond_water_microflora/links/0c96052144afe50212000000/Susceptibility-of-low-density-polyethylene-films-to-pond-water-microflora.p
  29. Municipalidad Provincial de Puno 2019. Estudio de caracterización de residuos sólidos municipales del distrito de Puno-2019. www.munipuno.gob.pe
  30. Nanda, S., Sahu, S., Abraham, J., & Sahu, S. S. 2010. Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management, 14(2 SRC-BaiduScholar FG-0), 95–98. https://doi.org/10.4314/jasem.v14i2.57839
  31. Nanda S., Sahu S. S. 2010. Biodegradability of polyethylene by Brevibacillus Pseudomonas and Rhodococcus spp. New York Science Journal, 3(7), 95–98. https://www.semanticscholar.org/paper/Biodegradability-of-polyethylene-by-Brevibacillus%2C-Nanda-Sahu/a33b3c8541c3387b2c27be1a2f68a43d1d529a2e
  32. Ortiz H., Cuevas S., Coria J. 2004. Caracterizacin por RAPDPCR de aislados de Pseudomonas aeruginosa obtenidos de pacientes con fibrosis quistica. A F Prez F L R C, 46(2 SRC-BaiduScholar FG-0), 149–157. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342004000200009
  33. Paço, A., Duarte, K., da Costa, J. P., Santos, P. S. M., Pereira, R., Pereira, M. E., Freitas, A. C., Duarte, A. C., & Rocha-Santos, T. A. P. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. The Science of the Total Environment, 586, 10–15. https://doi.org/10.1016/j.scitotenv.2017.02.017
  34. Plastics Europe. 2010. Plastics. http://www.plasticseurope.org/Documents/Document/20100226115604- Full_Spain.pdf
  35. Pramil R., Padmavathy K., Ramesh K. V, Mahalakshmi K. 2012. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis-Potential candidates for biodegradation of low density polyethylene (LDPE). African Journal of Bacteriology Research, 4(1 SRC-BaiduScholar FG-0), 9–14. https://doi.org/10.5897/JBR12.003
  36. Rajandas H., Parimannan S., Sathasivam K., Ravichandran M., Yin L. S. 2012. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polymer Testing, 31(8 SRC-BaiduScholar FG-0), 1094–1099. https://doi.org/10.1016/j.polymertesting.2012.07.015
  37. Ren J., Lin W. T., Shen Y. J., Wang J. F., Luo X. C., Xie M. Q. 2018. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresource Technology, 99(17), 7923–7927. https://doi.org/10.1016/j.biortech.2008.03.027
  38. Revelles O., Espinosa-Urgel M., Fuhrer T., Sauer U., Ramos J. L. 2005. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. Journal of Bacteriology, 187(21), 7500–7510. https://doi.org/10.1128/JB.187.21.7500-7510.2005
  39. Romero S. E. G., Bustos D. C. G., Casallas M. L., Vargas P. C. M. 2008. Factores bióticos y abióticos que condicionan la biorremediación por Pseudomonas en suelos contaminados por hidrocarburos. Nova, 6(9 SRC-BaiduScholar FG-0), 76–84. https://doi.org/10.22490/24629448.398
  40. Ruíz M. L. 2007. Pseudomonas aeruginosa: Aportación al conocimiento de su estructura y al de los mecanismos que contribuyen a su resistencia a los antimicrobianos [Universidad de Barcelona]. http://diposit.ub.edu/dspace/handle/2445/42532
  41. Seymour R. B. 1899. Polymer science before and after : notable developments during the lifetime of Maurits Dekker. Journal of Macromolecular ScienceChemistry, 26(8 SRC-BaiduScholar FG-0), 1023–1032. https://doi.org/10.1080/00222338908052032
  42. Shah S. R., Najim N. I., Shahnawaz W., Jangda A. A. 2019. Comments on: “High ankle-brachial index and risk of cardiovascular or all-cause mortality: A meta-analysis”. Atherosclerosis, 284, 267. https://doi.org/10.1016/j.atherosclerosis.2018.12.028
  43. Shalini S., Dorstyn L., Dawar S., Kumar, S. 2015. Old, new and emerging functions of caspases. Cell Death and Differentiation, 22(4), 526–539. https://doi.org/10.1038/cdd.2014.216
  44. Singh J., Gupta, K. C., Shrivastava A. 2015. Isolation and identification of low density polyethylene (LDPE) degrading bacterial strains from polythene polluted sites around GWALIOR CITY (M.P.). Journal of Global Biosciences, 4(8 SRC-BaiduScholar FG-0), 3220–3228. https://www.mutagens.co.in/jgb/vol.04/8/040829.pdf
  45. Skariyachan S., Megha M., Kini M. N., Mukund K. M., Rizvi A., Vasist K. 2015. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environmental Monitoring and Assessment, 187(1), 4174. https://doi.org/10.1007/s10661-014-4174-y
  46. Tellez A. 2004. La complejidad de la problemática ambiental de los residuos plásticos: una aproximación al análisis narrativo de política pública en Bogotá (Vol. 304, Issues 5672 SRC-BaiduScholar FG-0) [Universidad de Bogotá]. http://bdigital.unal.edu.co/7080/1/905077.2012.pdf
  47. Thompson R. C., Olsen Y., Mitchell R. P., Davis, A., Rowland S. J., John A. W., Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838–838. www.sciencemag.org/cgi/content/full/304/5672/838/%0ADC1
  48. Tokiwa Y., Calabia B. P., Ugwu, C. U., Aiba S. 2009. Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722
  49. Tribedi P., Gupta A. D., Sil A. K. 2015. Adaptation of Pseudomonas sp. AKS2 in Biofilm on Lowdensity Polyethylene Surface an Effective Strategy for Efficient Survival and Polymer Degradation Bioresources and Bioprocessing 14, 2(1 SRC-BaiduScholar FG-0). https://doi.org/10.1186/s40643-015-0044-x
  50. Tribedi P., Sil A. K. 2013. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environmental Science and Pollution Research International, 20(6), 4146–4153. https://doi.org/10.1007/s11356-012-1378-y
  51. Wu T., Jahan S. A., Zhang Y., Zhang J., Elmounayri H., Tovar, A. 2017. Design optimization of plastic injection tooling for additive manufacturing. Procedia Manufacturing, 10, 923–934. https://doi.org/10.1016/j.promfg.2017.07.082
  52. Yang J., Yang Y., Wu W.-M., Zhao J., Jiang L. 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a