EFECTO DEL RECICLADO DE LAS FIBRAS DE LAS BOTELLAS PET EN LA RESISTENCIA DEL CONCRETO NORMAL
Published 2020-07-31 — Updated on 2020-08-11
Versions
- 2020-07-31 (3)
- 2020-08-11 (2)
- 2020-08-11 (1)
Keywords
- Fibras ,
- botellas ,
- PET,
- medio ambiente,
- reciclado
- resistencia a la flexión,
- resistencia a la compresión ...More
Copyright (c) 2022 Darwin Quenta Flores

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
RESUMEN
Hoy en día enfrentamos un problema sobre la protección ambiental, el estilo de vida moderno junto con las nuevas tecnologías causó más producciones de materiales de desecho para los cuales existe el problema de eliminación. Uno de ellos son las botellas PET que debe desecharse o reciclarse adecuadamente para mantener limpia el medio ambiente, ya que se clasifican como materiales no biodegradables. Para abordar este problema, se realizó un estudio experimental del efecto del reciclado de las fibras de botella PET en la resistencia del concreto normal, fibras obtenidas mediante un reciclado mecánico. Se elaboró una serie de mezclas de concreto con adición de fibras PET de 0 % a 8 % estimada respecto al peso del cemento. Los concretos resultantes se compararon con el concreto normal (0 % de PET). Se analizó la resistencia a la compresión y resistencia a la flexión del concreto respectivamente. Los resultados indican que para concreto con 2 % de PET alcanza su máxima resistencia a la compresión logrando un incremento de 2,6 % y el concreto con 4 % de PET disminuye en 6,3 %, no obstante, alcanza una resistencia superior a 210 kg/cm2. La resistencia a la flexión para concreto con 4 % de fibras de PET aumenta a 24 %. Por lo tanto, hasta 4 % de fibras de PET es posible adicionar para lograr una resistencia adecuada del concreto, método muy útil para resolver algunos problemas de desechos de PET en el medio ambiente.
Palabras Clave: Fibras de las botellas PET, medio ambiente, reciclado, resistencia a la compresión, resistencia a la flexión.
References
- REFERENCIAS
- ACI - 318. 2014. Requisitos de Reglamento para Concreto Estructural (ACI 318S-14) y Comentario. American Concrete Institute (ACI). https://civilshare.files.wordpress.com/2016/07/aci_318s_14_en_espanol.pdf
- Akçaözoǧlu S., AtiÅŸ C. D., Akçaözoǧlu K. 2010. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285–290. http://doi.org/10.1016/j.wasman.2009.09.033
- Albano C., Camacho N., Hernández M., Matheus A., Gutiérrez A. 2009. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management, 29(10), 2707–2716. http://doi.org/10.1016/j.wasman.2009.05.007
- Aldahdooh M. A. A., Jamrah A., Alnuaimi A., Martini M. I., Ahmed M. S. R., Ahmed, A. S. R. 2018. Influence of various plastics-waste aggregates on properties of normal concrete. Journal of Building Engineering, 17, 13–22. http://doi.org/10.1016/j.jobe.2018.01.014
- ASTM C150. 2001. Standard specification for Portland cement. Annual Book of ASTM Standards 04.01, pp. 149–155. https://www.astm.org/Standards/C150.htm
- ASTM C33. 2016. Especificación normalizada para agregados para concreto. American Society for Testing and Materials (ASTM). https://www.astm.org/DATABASE.CART/HISTORICAL/C33C33M-16.htm
- ASTM C39. 2018. Método de Ensayo Normalizado para Resistencia a la Compresión de Especímenes Cilíndricos de Concreto. American Society for Testing and Materials (ASTM). https://www.astm.org/Standards/C39.htm
- ASTM C78. 2002. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third–Point Loading). American Society for Testing and Materials (ASTM). https://www.astm.org/DATABASE.CART/HISTORICAL/C78-02.htm
- Ávila L., Martínez-Barrera G., Barrera C., Ureña F., Loza A. 2013. Effects on Mechanical Properties of Recycled PET in Cement-Based Composites. International Journal of Polymer Science, 2013(1), 1–6. http://doi.org/10.1155/2013/763276
- Borg P., Baldacchino O., Ferrara, L. 2016. Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47. http://doi.org/10.1016/j.conbuildmat.2016.01.029
- Bui K., Satomi T., Takahashi H. 2018. Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93. http://doi.org/10.1016/j.wasman.2018.05.035
- Choi W., Moon J., Kim J., Lachemi M. 2009. Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materials, 23(8), 2829–2835. http://doi.org/10.1016/j.conbuildmat.2009.02.036
- Foti D. 2011. Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, 25(4), 1906–1915. http://doi.org/10.1016/j.conbuildmat.2010.11.066
- Frigione M. 2010. Recycling of PET bottles as fine aggregate in concrete. Waste Management, 30(6), 1101–1106. http://doi.org/10.1016/j.wasman.2010.01.030
- Ge Z., Yue H., Sun R. 2015. Properties of mortar produced with recycled clay brick aggregate and PET. Construction and Building Materials, 93, 851–856. http://doi.org/10.1016/j.conbuildmat.2015.05.081
- Gholampour A., Ozbakkaloglu T. 2018. Recycled plastic. New Trends in Eco-efficient and Recycled Concrete. Elsevier Ltd. http://doi.org/10.1016/b978-0-08-102480-5.00003-8
- Kim B., Yi H., Kim Y., Kim J., Song, C. 2010. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232–240. http://doi.org/10.1016/j.cemconcomp.2009.11.002
- Mahdi F., Abbas H., Khan A. 2010. Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24(1), 25–36. http://doi.org/10.1016/j.conbuildmat.2009.08.006
- Mansour M., Ali A. 2015. Reusing waste plastic bottles as an alternative sustainable building material. Energy for Sustainable Development, 24, 79–85. http://doi.org/10.1016/j.esd.2014.11.001
- Marthong C. 2015. Effects of PET fiber arrangement and dimensions on mechanical properties of concrete. IES Journal Part A: Civil and Structural Engineering, 8(2), 111–120. http://doi.org/10.1080/19373260.2015.1014304
- Marthong C., Sarma K. 2016. Influence of PET fiber geometry on the mechanical properties of concrete: An experimental investigation. European Journal of Environmental and Civil Engineering, 20(7), 771–784. http://doi.org/10.1080/19648189.2015.1072112
- Martínez-Soto E., Mendoza-Escobedo J. 2018. Comportamiento mecánico de concreto fabricado con agregados reciclados. Ingeniería Investigación y Tecnología, 7(3), 151–164. http://doi.org/10.22201/fi.25940732e.2006.07n3.012
- Nibudey N. 2013. Strengths Prediction of Plastic fiber Reinforced concrete, 3(1), 1818–1825.
- Nováková K., Å eps K., Achten H. 2017. Experimental development of a plastic bottle usable as a construction building block created out of polyethylene terephthalate: Testing PET(b)rick 1.0. Journal of Building Engineering, 12, 239–247. http://doi.org/10.1016/j.jobe.2017.05.015
- Pelisser F., Montedo R., Gleize J., Roman R. 2012. Mechanical properties of recycled PET fibers in concrete. Materials Research, 15(4), 679–686. http://doi.org/10.1590/s1516-14392012005000088
- Pereira De Oliveira A., Castro-Gomes P. 2011. Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. http://doi.org/10.1016/j.conbuildmat.2010.11.044
- Shubbar D., Al-Shadeedi S. 2017. Utilization of waste plastic bottles as fine aggregate in concrete. Kufa Journal of Engineering, 8(2), 132–146. Retrieved from http://www.uokufa.edu.iq/journals/index.php/kje/article/view/6068
- Siddique R., Khatib J., Kaur I. 2008. Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835–1852. http://doi.org/10.1016/j.wasman.2007.09.011
- Yesilata B., Isike Y., Turgut P. 2009. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials, 23(5), 1878–1882. http://doi.org/10.1016/j.conbuildmat.2008.09.014