Recuperación de oro aluvial mediante mesa gravimétrica como alternativa al uso de mercurio en Madre de Dios
Publicado 2025-06-30
Palabras clave
- Concentrado,
- concentración gravimétrica,
- esclusas,
- mesa gravimétrica,
- oro
Derechos de autor 2025 Marcelino Vargas Quea

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
La minería artesanal de oro aluvial en Madre de Dios presenta limitaciones técnicas significativas para la recuperación de partículas finas (< 75 µm), atribuibles al uso empírico de mesas gravimétricas sin una adecuada configuración de variables operativas. Este estudio evaluó el efecto del tamaño de partícula, el caudal de agua y la pendiente de la mesa gravimétrica sobre la eficiencia de recuperación de oro en concentrados de esclusas, mediante un diseño factorial 2³ y análisis de varianza (ANOVA). Las pruebas experimentales, realizadas con muestras representativas de tres concesiones mineras del corredor minero, revelaron que tanto el tamaño de partícula como el caudal de agua influyen de manera altamente significativa en la recuperación de oro (p < 0,001), mientras que la pendiente mostró efectos relevantes solo en interacción con tamaño de partícula de oro y caudal de agua. Se alcanzó una recuperación máxima del 86,98 % al optimizar simultáneamente las tres variables, siendo la fracción granulométrica de 105 – 250 µm la que presentó mayor concentración de oro. Los resultados evidenciaron que pendientes mal calibradas y caudales inadecuados favorecen la pérdida de oro fino en los relaves, limitando el rendimiento de la mesa gravimétrica. Resultando la mesa gravimétrica se valida como una alternativa técnica viable al uso de mercurio, siempre que se realice una adecuada calibración operativa. En conclusión, la optimización conjunta de los parámetros operativos mejora significativamente la eficiencia de la concentración gravimétrica, aportando a la transición hacia una minería artesanal más limpia, segura y sostenible en la Amazonía peruana.
Referencias
- Abbireddy, C. O. R., & Clayton, C. R. I. (2009). A review of modern particle sizing methods. In Proceedings of the Institution of Civil Engineers: Geotechnical Engineering (Vol. 162, Issue 4, pp. 193–201). https://doi.org/10.1680/geng.2009.162.4.193
- Andò, S. (2020). Gravimetric separation of heavy minerals in sediments and rocks. Minerals, 10(3). https://doi.org/10.3390/min10030273
- Arief, T. (2022). Design and Experimentation Shaking Table Tool for GravityConcentration Metal Mineral Separation. International Journal of Mineral Processing and Extractive Metallurgy, 7(1), 1. https://doi.org/10.11648/j.ijmpem.20220701.11
- Ateh, K. I., Suh, C. E., Shuster, J., Shemang, E. M., Vishiti, A., Reith, F., & Southam, G. (2021). Alluvial gold in the Bétaré Oya drainage system, east Cameroon. Journal of Sedimentary Environments, 6(2), 201–212. https://doi.org/10.1007/s43217-021-00051-w
- Burt, R. (1999). The role of gravity concentration in modern processing plants*. In Minerals Engineering (Vol. 12, Issue 11).
- Das, A., & Sarkar, B. (2018). Advanced Gravity Concentration of Fine Particles: A Review. In Mineral Processing and Extractive Metallurgy Review (Vol. 39, Issue 6, pp. 359–394). Taylor and Francis Inc. https://doi.org/10.1080/08827508.2018.1433176
- Dominy, S., Xie, Y., Dominy, S. C., Xie, Y., & Platten, I. M. (2008). Characterisation of in situ gold particle size and distribution for sampling protocol optimisation. https://www.researchgate.net/publication/289363579
- Ernawati, R., Idrus, A., & Petrus, H. T. B. M. (2018). Study of the optimization of gold ore concentration using gravity separator (shaking table): Case study for LS epithermal gold deposit in Artisanal Small scale Gold Mining (ASGM) Paningkaban, Banyumas, Central Java. IOP Conference Series: Earth and Environmental Science, 212(1). https://doi.org/10.1088/1755-1315/212/1/012019
- Falconer, A. (2003). Gravity separation: Old technique/new methods. Physical Separation in Science and Engineering, 12(1), 31–48. https://doi.org/10.1080/1478647031000104293
- Ferdana, A. D., Petrus, H. T. B. M., Bendiyasa, I. M., Prijambada, I. D., Hamada, F., & Sachiko, T. (2018). Optimization of gold ore Sumbawa separation using gravity method: Shaking table. AIP Conference Proceedings, 1945. https://doi.org/10.1063/1.5030292
- Flora Elsa Huaman-Paredes, Gregorio Urbano Palma-Figueroa, Lisveth Flores-del Pino (2020). Caracterización preliminar de residuos de minería aluvial en la región de Madre de Dios. Revista cubana de Química, 32, 1–13.
- Jiga, A. P., Pasithbhattarabhorn, J., Juntarasakul, O., Pimolrat, J., Soonthornwiphat, N., & Phengsaart, T. (2022). Gold recovery from the residue of jewelry waste recycling: Pre-treatment using shaking table separation and flotation. IOP Conference Series: Earth and Environmental Science, 1071(1). https://doi.org/10.1088/1755-1315/1071/1/012024
- José, F. D. S., Barcelos, H. O., & Pereira, C. A. (2018). Combination of gravity concentration variables to increase the productivity of the Brucutu mineral processing plant. Journal of Materials Research and Technology, 7(2), 158–164. https://doi.org/10.1016/j.jmrt.2017.06.002
- Kannan, A. S., Jareteg, K., Lassen, N. C. K., Carstensen, J. M., Hansen, M. A. E., Dam, F., & Sasic, S. (2017). Design and performance optimization of gravity tables using a combined CFD-DEM framework. Powder Technology, 318, 423–440. https://doi.org/10.1016/j.powtec.2017.05.046
- Li, L., Remmelgas, J., van Wachem, B. G. M., von Corswant, C., Johansson, M., Folestad, S., & Rasmuson, A. (2015). Residence time distributions of different size particles in the spray zone of a Wurster fluid bed studied using DEM-CFD. Powder Technology, 280, 124–134. https://doi.org/10.1016/j.powtec.2015.04.031
- Manser, R. J., Barleyt, R. W., & Willst, B. A. (1991). The shaking table concentrator-the influence of operating conditions and table parameters on mineral separation-the development of a mathematical model for normal operating conditions. In Minerals Engineering (Vol. 4, Issue 4).
- Marion, C., Williams, H., Langlois, R., Kökkılıç, O., Coelho, F., Awais, M., Rowson, N. A., & Waters, K. E. (2017). The potential for dense medium separation of mineral fines using a laboratory Falcon Concentrator. Minerals Engineering, 105, 7–9. https://doi.org/10.1016/j.mineng.2016.12.008
- Martinez, G., Restrepo-Baena, O. J., & Veiga, M. M. (2021). The myth of gravity concentration to eliminate mercury use in artisanal gold mining. In Extractive Industries and Society (Vol. 8, Issue 1, pp. 477–485). Elsevier Ltd. https://doi.org/10.1016/j.exis.2021.01.002
- Mkandawire, N. P., McGrath, T., Bax, A., & Eksteen, J. (2020). Potential of the dense media cyclone for gold ore preconcentration. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 129(1), 87–95. https://doi.org/10.1080/25726641.2019.1669982
- Nasiha, H. J., & Shanmugam, P. (2018). Estimation of settling velocity of sediment particles in estuarine and coastal waters. Estuarine, Coastal and Shelf Science, 203, 59–71. https://doi.org/10.1016/j.ecss.2018.02.001
- Prasetya, A., Ahsa, W. M., Gustiana, H. S. E. A., Astuti, W., & Petrus, H. T. B. M. (2020). Effect of Particle Size and Shaking Speed on Enhancing Concentration of Manganese using Shaking Table. IOP Conference Series: Materials Science and Engineering, 742(1). https://doi.org/10.1088/1757-899X/742/1/012027
- Santana, V., García Blanco, Y. J., Germer, E. M., & Franco, A. (2021, December 15). Analysis of particles sedimentation in shear-thinning fluid: settling velocity, drag coefficient, and settling trajectories comparison. https://doi.org/10.26678/abcm.cobem2021.cob2021-0957
- Silva, M., Van Vleck, G. K., Deukmejian, G., & Blubaugh, D. L. (n.d.). Special Publication 87 1986 California department of conservation division of mines and geology placer gold recovery methods placer gold recovery methods.
- Teniola, O. S., Adeleke, A. A., Ibitoye, S. A., & Shitu, M. D. (2022). Effectiveness of Gravity Separation of Low Grade Nigerian Gold Ore Using Shaking Table. International Journal of Nonferrous Metallurgy, 10(02), 15–22. https://doi.org/10.4236/ijnm.2022.102002
- Teschner, B., Smith, N. M., Borrillo-Hutter, T., John, Z. Q., & Wong, T. E. (2017). How efficient are they really? A simple testing method of small-scale gold miners’ gravity separation systems. Minerals Engineering, 105, 44–51. https://doi.org/10.1016/j.mineng.2017.01.005
- Ulusoy, U., & Atagun, O. N. (2023). Particle shape characterization of shaking table streams in a Turkish chromite concentration plant by using dynamic imaging and microscopical techniques. Particulate Science and Technology, 41(2), 141–150. https://doi.org/10.1080/02726351.2022.2046666
- Veiga, M. M., & Gunson, A. J. (2020). Gravity concentration in artisanal gold mining. In Minerals (Vol. 10, Issue 11, pp. 1–50). MDPI AG. https://doi.org/10.3390/min10111026
- Vieira, R. (2006). Mercury-free gold mining technologies: Possibilities for adoption in the Guianas. Journal of Cleaner Production, 14(3–4), 448–454. https://doi.org/10.1016/j.jclepro.2004.09.007
- Waterman Sulistyana Bargawa, & Eko Hardiyanto. (2017). Characterization of the Gold Ore to Acquire an Optimum Degree of Liberation. Journal of Environmental Science and Engineering B, 6(6). https://doi.org/10.17265/2162-5263/2017.06.006
- Yadav, S., Sieffert, Y., Vieux-Champagne, F., Debove, L., Decret, D., Malecot, Y., & Garnier, P. (2022). Optimization of the Use Time of a Shake Table with Specimen Preparation outside the Table Surface. Buildings, 12(3). https://doi.org/10.3390/buildings12030319
- Yıldırım Gülsoy, Ö., & Gülcan, E. (2019). A new method for gravity separation: Vibrating table gravity concentrator. Separation and Purification Technology, 211, 124–134. https://doi.org/10.1016/j.seppur.2018.09.074
- You, K., & Liu, H. (2023). Research on optimization of control parameters of gravity shaking table. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28171-5
