Evaluación de concentración de arsénico para proponer la alternativa de remediación en el río Ananea
Publicado 2023-12-29
Palabras clave
- arsénico,
- agua,
- concentración,
- minería,
- sedimento
Derechos de autor 1969 Marcelino Vargas Quea

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
Este estudio aborda la problemática de la contaminación de agua con arsénico del río Ananea debido a la minería artesanal e informal. El objetivo principal es evaluar la contaminación por arsénico de aguas del río Ananea y alternativas de remediación, durante los 12 meses del año 2018 a 2019. Los resultados revelan que la concentración de arsénico en agua en el punto P-A ubicada en la laguna Sillacunca fue de 0,926 mg/l, 0,527 mg/l, 0,730 mg/l; en sedimentos 117,475 mg/kg, 74,8 mg/kg, 92,50 mg/kg; en el punto de monitoreo P-B ubicado en el río Ananea a 100 metros aguas arriba confluencia con el río Lunar de Oro, la concentración de arsénico en agua es de 0,422 mg/l, 0.221 mg/l, 0.225 mg /l; en sedimentos es 56,73 mg/kg, 26,77 mg/kg, 62,5 mg/kg. La concentración de arsénico en la zona de la laguna Sillacunca y en la zona en el río Ananea a 100 metros aguas arriba confluencia con el río Lunar de Oro presentaron una mayor concentración.
Referencias
- Apaza Campos, Rolando, y Miguel Elias. Calcina Benique. 2014. «Contaminación natural de aguas subterráneas por arsénico en la zona de Carancas y Huata, Puno». Revista de Investigaciones Altoandinas 16 (1): 51-58.
- Azcue, J M, y J O Nriagu. 1995. «Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario». Journal of Geochemical Exploration 52 (1-2): 81. https://doi.org/10.1016/0375-6742(94)00032-7.
- Bharath, M, B Krishna, y B Manoj. 2018. «A Review of Electrocoagulation Process for Wastewater Treatment». International Journal of ChemTech Research 11 (03): 289-302. https://doi.org/10.20902/IJCTR.2018.110333.
- Borba, R P, B R Figueiredo, B Rawlins, y J Matschullat. 2003. «Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil». Environmental Geology 44 (1): 39-52. https://doi.org/10.1007/s00254-002-0733-6.
- Bowell, R J. 1994. «Sorption of arsenic by iron oxides and oxyhydroxides in soils». Applied Geochemistry 9 (3): 279-86. https://doi.org/10.1016/0883-2927(94)90038-8.
- Boyle, R, y I Jonasson. 1973. «The geochemistry of arsenic and its use as an indicator element in geochemical prospecting». Journal of Geochemical Exploration 2 (3): 251-96. https://doi.org/10.1016/0375-6742(73)90003-4.
- Chaplin, M F. 2001. «Water: its importance to life». Biochemistry and Molecular Biology Education 29 (2): 54-59. https://doi.org/10.1111/j.1539-3429.2001.tb00070.x.
- Craw, D, D Chappell, A Reay, y D Walls. 2000. «Mobilisation and attenuation of arsenic around gold mines, east Otago, New Zealand». New Zealand Journal of Geology and Geophysics 43 (3): 373-83. https://doi.org/10.1080/00288306.2000.9514894.
- Dorleku, M K, D Nukpezah, y D Carboo. 2018. «Effects of small-scale gold mining on heavy metal levels in groundwater in the Lower Pra Basin of Ghana». Applied Water Science 8 (5). https://doi.org/10.1007/s13201-018-0773-z.
- Drahota, P, J Rohovec, M Filippi, M Mihaljevi, P Rychlovský, y Č Václav. 2009. «Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic». Science of the Total Environment 407 (10): 3372-84. https://doi.org/10.1016/j.scitotenv.2009.01.009.
- Eduful, M, K Alsharif, A Eduful, M Acheampong, J Eduful, y L Mazumder. 2020. «The Illegal Artisanal and Small-scale mining (Galamsey) ‘Menace’ in Ghana: Is Military-Style Approach the Answer?» Resources Policy 68:101732. https://doi.org/10.1016/j.resourpol.2020.101732.
- Escalera, R, y M Ormachea. 2017. «Hidroquímica de la presencia natural de arsénico en aguas subterráneas de áreas suburbanas de Cochabamba-Bolivia y evaluación de la viabilidad técnica de procesos de remoción». Investigación & Desarrollo 1 (17): 27-41. https://doi.org/10.23881/idupbo.017.1-3i.
- Ferguson, J F, y J Gavis. 1972. «A review of the arsenic cycle in natural waters». Water Research 6 (11): 1259-74. https://doi.org/10.1016/0043-1354(72)90052-8.
- Francisca, Franco M., y Magali E. Carro Pérez. 2014. «Remoción de arsénico en agua mediante procesos de coagulación-floculación». Revista Internacional de Contaminación Ambiental 30 (2): 177-90.
- García-Lara, A M, C Montero-Ocampo, F Equihua-Guillen, J E Camporredondo-Saucedo, R Servin-Castaneda, y C R Muñiz-Valdes. 2014. «Arsenic Removal from Natural Groundwater by Electrocoagulation Using Response Surface Methodology». Journal of Chemistry, n.o 1, 1857625. https://doi.org/10.1155/2014/857625.
- Garcia-Segura, Sergi, Maria Maesia S G Eiband, Jailson Vieira de Melo, y Carlos Alberto Martínez-Huitle. 2017. «Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies». Journal of Electroanalytical Chemistry 801:267-99. https://doi.org/10.1016/j.jelechem.2017.07.047.
- Garelick, H., H. Jones, A. Dybowska, y E. Valsami-Jones. 2008. «Arsenic Pollution Sources». En Reviews of Environmental Contamination Volume 197: International Perspectives on Arsenic Pollution and Remediation, 197:17-60. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-79284-2_2.
- Gasque Silva, Laura. 2013. «Arsénico, el elemento inclasificable». Educación Química 24:495-500. https://doi.org/https://doi.org/10.1016/S0187-893X(13)72519-9.
- Johnston, R, y H Heijnen. 2015. «Safe Water Technology for Arsenic Removal». Safe Water Technology for Arsenic Removal, 1-22.
- Kazapoe, R, y E Arhin. 2019. «Determination of local background and baseline values of elements within the soils of the Birimian Terrain of the Wassa Area of Southwest Ghana». Geology, Ecology, and Landscapes 5 (3): 199-208. https://doi.org/10.1080/24749508.2019.1705644.
- Khatri, N, y S Tyagi. 2014. «Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas». Frontiers in Life Science 8 (1): 23-39. https://doi.org/10.1080/21553769.2014.933716.
- Kobya, M, U Gebologlu, F Ulu, S Oncel, y E Demirbas. 2011. «Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes». Electrochimica Acta 56 (14): 5060-70. https://doi.org/10.1016/j.electacta.2011.03.086.
- Kumar, P R, S Chaudhari, K C Khilar, y S P Mahajan. 2004. «Removal of arsenic from water by electrocoagulation». Chemosphere 55 (9): 1245-52. https://doi.org/10.1016/j.chemosphere.2003.12.025.
- la Peña-Torres, A De, I Cano-Rodriguez, A Aguilera-Alvarado, Z Gamino-Arroyo, E Gomez-Castro, M Gutierrez-Valtierra, y S Soriano-Perez. 2012. «Adsorción y desorción de arsénico en oxihidróxidos de fierro sintéticos como modelo de estudio para explicar uno de los mecanismos de su lixiviación de jales mineros». Revista mexicana de ingeniería química 11 (3): 495-503.
- Lakshmanan, D, D A Clifford, y G Samanta. 2009. «Ferrous and ferric ion generation during iron electrocoagulation». Environmental Science and Technology 43 (10): 3853-59. https://doi.org/10.1021/es8036669.
- Langmuir, D, J Mahoney, y J Rowson. 2006. «Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO₄·2H₂O) and their application to arsenic behavior in buried mine tailings». Geochimica et Cosmochimica Acta 70 (12): 2942-56. https://doi.org/10.1016/j.gca.2006.03.006.
- Lièvremont, D, P N Bertin, y M C Lett. 2009. «Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes». Biochimie 91 (10): 1229-37. https://doi.org/10.1016/j.biochi.2009.06.016.
- Loayza Choque, Edwin, y A Galloso Carrasco. 2008. «Implicancias Ambientales por la Actividad Minera de la zona de Ananea en la Cuenca del Río Ramis». Revista de Geología. Vol. 5. INGEMMET. Boletín, Serie E: Minería; n° 5. Instituto Geológico, Minero y Metalúrgico - INGEMMET. https://hdl.handle.net/20.500.12544/352.
- López-Guzmán, M, M T Alarcón-Herrera, J R Irigoyen-Campuzano, L A Torres-Castañón, y L Reynoso-Cuevas. 2019. «Simultaneous removal of fluoride and arsenic from well water by electrocoagulation». Science of the Total Environment 678:181-87. https://doi.org/10.1016/j.scitotenv.2019.04.400.
- Luján, J C. 2001. «Un hidrogel de hidróxido de aluminio para eliminar el arsénico del agua». Revista Panamericana de Salud Pública 9 (5): 302-5. https://doi.org/10.1590/S1020-49892001000500003.
- Macur, R. E., J. T. Wheeler, T. R. McDermott, y W. P. Inskeep. 2001. «Microbial Populations Associated with the Reduction and Enhanced Mobilization of Arsenic in Mine Tailings». Environmental science & technology 35 (18): 3676-82. https://doi.org/10.1021/es0105461.
- Madhavan, N., y V. Subramanian. 2000. «Sulphide mining as a source of arsenic in the environment». Current Science 78 (6): 702-9. http://www.jstor.org/stable/24103885.
- Méndez-Ortiz, Blanca Adriana, Alejandro Carrillo-Chávez, Marcos Gustavo Monroy-Fernández, y Gilles Levresse. 2012. «Influencia del pH y la alcalinidad en la adsorción de As y metales pesados por oxihidróxidos de Fe en jales mineros de tipo skarn de Pb-Zn-Ag». Revista mexicana de ciencias geológicas 29:639-48.
- MINAM. 2013. Decreto Supremo No 002-2013. Diario el Peruano. https://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/D-S-N-002-2013-MINAM.pdf.
- ———. 2017. Decreto Supremo N° 004-2017-MINAM. Diario El Peruano, 7 de junio. https://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf.
- Mohora, E, S Rončević, J Agbaba, K Zrnić, A Tubić, y B Dalmacija. 2018. «Arsenic removal from groundwater by horizontal-flow continuous electrocoagulation (EC) as a standalone process». Journal of Environmental Chemical Engineering 6 (1): 512-19. https://doi.org/10.1016/j.jece.2017.12.042.
- Morales Cabrera, D. U., E. Avendaño Cáceres, D. Zevallos Ramos, J. Fernández Prado, Z. L. Mendoza Rodas, y A. Torres Ventura. 2017. «Arsénico total no deseado ante valores referenciales de pH en agua superficial». Revista De Investigaciones Altoandinas - Journal of High Andean Research 19 (3): 305-12. https://doi.org/10.18271/ria.2017.295.
- Müller, S, T Behrends, y C M van Genuchten. 2019. «Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation». Water Research 155:455-64. https://doi.org/10.1016/j.watres.2018.11.060.
- Nidheesh, P. V., y T. S. A. Singh. 2017. «Arsenic removal by electrocoagulation process: Recent trends and removal mechanism». Chemosphere 181:418-32. https://doi.org/10.1016/j.chemosphere.2017.04.082.
- Sharma, V K, y M Sohn. 2009. «Aquatic arsenic: Toxicity, speciation, transformations, and remediation». Environment International 35 (4): 743-59. https://doi.org/10.1016/j.envint.2009.01.005.
- Smedley, P L, y D G Kinniburgh. 2002. «A review of the source, behaviour and distribution of arsenic in natural waters». Applied Geochemistry 17 (5): 549-70. https://doi.org/10.1016/S0883-2927(02)00018-5.
- Tabelin, C B, M Silwamba, F C Paglinawan, A J S Mondejar, H G Duc, V J Resabal, E M Opiso, et al. 2020. «Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities». Chemosphere 260:127574. https://doi.org/10.1016/j.chemosphere.2020.127574.
- Wedepohl, K. H. 1969. Handbook of Geochemistry. 1.a ed. Springer Berlin, Heidelberg.
- Welch, Alan H., D.B. Westjohn, Dennis R. Helsel, y Richard B. Wanty. 2000. «Arsenic in Ground Water of the United States: Occurrence and Geochemistry». Groundwater 38 (4): 589-604. https://doi.org/10.1111/j.1745-6584.2000.tb00251.x.
- Xu, H, B Allard, y A Grimvall. 1991. «Effects of acidification and natural organic materials on the mobility of arsenic in the environment». Water Air Soil Pollut 57:269-78. https://doi.org/10.1007/BF00282890.
