Publicado 2021-01-31 — Actualizado el 2021-01-31
Versiones
- 2021-01-31 (2)
- 2021-01-31 (1)
Derechos de autor 2021 LUIS ALBERTO SUPO QUISPE, SANDRA BEATRIZ BUTRÓN PINAZO

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
RESUMENLas aguas residuales de baños portátiles son consideradas aguas residuales industriales debido a la alta carga contaminante, entre los principales y más tóxicos se encuentran los compuestos fenólicos que hacen que sea necesario y obligatorio el tratamiento adecuado antes de verterlo en los sistemas de alcantarillado. La investigación fue realizada en la empresa Concretos Supermix S.A. durante los meses de Junio a Diciembre del 2019. Tuvo como objetivo, evaluar la degradación del fenol de aguas residuales de baños químicos portátiles mediante Pseudomonas aeruginosa. Se obtuvieron las cepas microbianas a partir de muestras de aguas residuales provenientes de baños químicos portátiles, el crecimiento de bacterias se realizó en medios de cultivos generales y selectivos. La inmovilización se realizó por atrapamiento de bacterias, en una matriz de alginato de calcio. La adaptación fue de forma gradual con incrementos de dosificación de fenol en concentraciones de 7 a 1400 mg/L, en medio mineral (20 %) con 10 % de cultivo de cepas, en un periodo de 72 a 168 h, se emplearon 310 perlas de Pseudomonas aeruginosa inmovilizadas, con tiempos de contacto de 168 h para concentraciones iniciales de 368 mg/L de fenol, obteniendo como concentración final de 91,4 mg/L (porcentaje de remoción de 75,2 %) y para las 3 muestras de 5 mg/L de fenol, se emplearon 125 perlas, con tiempos de contacto de 96 h, obteniendo como concentración final 0,34; ,18 y 0,21 mg/L (porcentaje de remoción de 93,2; 96,4; 95,8 %). Se concluye que Pseudomonas aeruginosa inmovilizada tiene capacidad para degradar fenol.
Referencias
- REFERENCIAS
- Annadurai, G., Juang, R. S., & Lee, D. J. 2002. Microbiological degradation of phenol using mixed liquors of Pseudomonas putida and activated sludge. Waste Management, 22(7), 703–710. https://doi.org/10.1016/S0956-053X(02)00050-8
- ATSDR. 2018. Agencia para Sustancias Tóxicas y el Registro de Enfermedades - Compuestos toxicos peligrosos. EEUU. https://www.atsdr.cdc.gov/es/index.html
- Bandyopadhyay, D., Mandal, M., Adam, L., Mendelsohn, J., & Kumar, R. 1998. Physical interaction between epidermal growth factor receptor and DNA- dependent protein kinase in mammalian cells. Journal of Biological Chemistry, 273(3), 1568–1573. https://doi.org/10.1074/jbc.273.3.1568
- Calabrese, E. J., & Kenyon, E. 2018. Air toxics and risk assessment (5th ed.). EEUU: CRC Press. Retrieved from https://books.google.es/books?hl=es&lr=&id=-jvvDgIht9QC&oi=fnd&pg=PR7&dq=Calabrese+%26+Kenyon,+2014+-+Air+toxics+and+risk+assessment&ots=uUQ7wcoWE0&sig=tgjAyFkFy-PtfAaHc1stsTqSlDI#v=onepage&q=Calabrese %26 Kenyon%2C 2014 - Air toxics and risk assessment&f
- Chang, J. S., Chou, C., & Chen, S. Y. 2001. Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 36(8–9), 757–763. https://doi.org/10.1016/S0032-9592(00)00274-0
- Collins, L. D., & Daugulis, A. J. 1999. Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor. Applied Microbiology and Biotechnology, 52(3), 354–359. https://doi.org/10.1007/s002530051531
- EPA Agency, U. S. E. P. 2014. Quality Assurance Guidance Document-Model Quality Assurance Project Plan for the PM Ambient Air. EEUU. https://www.epa.gov/environmental-topics/water-topics
- Fathepure, B. Z., & Vogel, T. M. 2015. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Applied and Environmental Microbiology, 57(12), 3418–3422. https://doi.org/10.1128/aem.57.12.3418-3422.1991
- Ghosh, S., & Swaminathan, T. 2003. Optimization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. Chemical and Biochemical Engineering Quarterly, 17(4), 319–325. http://silverstripe.fkit.hr/cabeq/assets/Uploads/Cabeq-2003-04-09.pdf
- Hill, G. A., & Robinson, C. W. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnology and Bioengineering, 17(11), 1599–1615. https://doi.org/10.1002/bit.260171105
- Hoq, M. M., & Deckwer, W. D. 1995. Cellulase-free xylanase by thermophilic fungi: a comparison of xylanase production by two Thermomyces lanuginosus strains. Applied Microbiology and Biotechnology, 43(4), 604–609. https://doi.org/10.1007/BF00164761
- Koneman, E. W., & Allen, S.oneman, and S. A. 2008. Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. (Ed. médica). Retrieved from https://books.google.es/books?hl=es&lr=&id=jyVQueKro88C&oi=fnd&pg=PA1&dq=Koneman+%26+Allen,+2008&ots=5PNg08aPoz&sig=sn9B8d113X2p81cGpK0ALPOMEV4#v=onepage&q=Koneman %26 Allen%2C 2008&f=false
- Kotturi, G., Robinson, C. W., & Inniss, W. E. 1991. Applied Microbiology Biotechnology Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 34(4), 539–543. https://link.springer.com/article/10.1007/BF00180585
- Kumari, S., Chetty, D., Ramdhani, N., & Bux, F. 2013. Phenol degrading ability of Rhodococcus pyrinidivorans and Pseudomonas aeruginosa isolated from activated sludge plants in South Africa. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(8), 947–953. https://doi.org/10.1080/10934529.2013.762740
- Kwon, K. H., & Yeom, S. H. 2009. Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess and Biosystems Engineering, 32(4), 435–442. https://doi.org/10.1007/s00449-008-0263-z
- Leilei, Z., Mingxin, H., & Suiyi, Z. 2012. Biodegradation of p-nitrophenol by immobilized Rhodococcus sp. strain Y-1. Chemical and Biochemical Engineering Quarterly, 26(2), 137–144. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=124933
- Mollaei, M., Abdollahpour, S., Atashgahi, S., Abbasi, H., Masoomi, F., Rad, I., … Noghabi, K. A. 2010. Enhanced phenol degradation by Pseudomonas sp. SA01: Gaining insight into the novel single and hybrid immobilizations. Journal of Hazardous Materials, 175(1–3), 284–292. https://doi.org/10.1016/j.jhazmat.2009.10.002
- Oboirien, B. O., Amigun, B., Ojumu, T. V., Ogunkunle, O. A., Adetunji, O. A., Betiku, E., & Solomon, B. O. 2017. Parametros Para Varias De Degradacion Del Fenol Pseudomanos Improtnate.Pdf. http://docsdrive.com/pdfs/ansinet/biotech/2005/56-61.pdf.
- Odokuma, L. O., & Okpokwasili, G. C. 1993. Seasonal ecology of hydrocarbon-utilizing microbes in the surface Waters of a river. Environmental Monitoring and Assessment, 27(3), 175–191. https://doi.org/10.1007/BF00548364
- Prieto, M. B., Hidalgo, A., Serra, J. L., & Llama, M. J. 2002. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite® in a packed-bed reactor. Journal of Biotechnology, 97(1), 1–11. https://doi.org/10.1016/S0168-1656(02)00022-6
- Prpich, G. P., & Daugulis, A. J. 2005. Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor. Biodegradation, 16(4), 329–339. https://doi.org/10.1007/s10532-004-2036-y
- Rivera-Jacinto, M., Rodríguez-Ulloa, C., & Huayán-Dávila, G. 2008. Pseudomonas aeruginosa productora de betalactamasa clásica y de espectro extendido en reservorios de un servicio de Neonatología. Rev. Peru. Med. Exp. Salud Publica, 25(2), 250–252. https://doi.org/10.17843/rpmesp.2008.252.1263
- Ruiz-Ordaz, N., Ruiz-Lagunez, J. C., Castañón-González, J. H., Hernández-Manzano, E., Cristiani-Urbina, E., & Galíndez-Mayer, J. 2001. Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column. Revista Latinoamericana de Microbiologia, 43(1), 19–25. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=10554
- Ullhyan, A., & Ghosh, U. K. 2012. Biodegradation of phenol with immobilized Pseuodomonas putida activated carbon packed bio-filter tower. African Journal of Biotechnology, 11(85), 15160–15167. https://doi.org/10.5897/AJB11.3620
- Xu, R. X., Li, B., Zhang, Y., Si, L., Zhang, X. Q., & Xie, B. 2016. Response of biodegradation characteristics of unacclimated activated sludge to moderate pressure in a batch reactor. Chemosphere, 148, 41–46. https://doi.org/10.1016/j.chemosphere.2016.01.018
- Yordanova, G., Godjevargova, T., Nenkova, R., & Ivanova, D. 2013. Biodegradation of phenol and phenolic derivatives by a mixture of immobilized cells of Aspergillus awamori and Trichosporon cutaneum. Biotechnology and Biotechnological Equipment, 27(2), 3681–3688. https://doi.org/10.5504/BBEQ.2013.0003
- Zhou, J., Yu, X., Ding, C., Wang, Z., Zhou, Q., Pao, H., & Cai, W. 2011. Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. Journal of Environmental Sciences, 23(1), 22–30. https://doi.org/10.1016/S1001-0742(10)60369-5
- Zilli, M., Converti, A., Fava, F., & Nicolella, C. 2007. Control of 2-chlorophenol vapour emissions by a trickling biofilter. Journal of Biotechnology, 128(3), 654–658. https://doi.org/10.1016/j.jbiotec.2006.12.014